Shrestha B, Butt I, Da Silva M, Sanchez-Lara A, Wagner B, Raftery A, Johnson T, Haylor J. Upregulation of transglutaminase and ε (γ-glutamyl)-lysine in the Fisher-Lewis rat model of chronic allograft nephropathy.
BIOMED RESEARCH INTERNATIONAL 2014;
2014:651608. [PMID:
25143942 PMCID:
PMC4131109 DOI:
10.1155/2014/651608]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND
Tissue transglutaminase (TG2), a cross-linking enzyme, modulates deposition of extracellular matrix protein in renal fibrosis. This study aimed to examine TG2 and its cross-link product ε(γ-glutamyl)-lysine in the Fisher-Lewis rat renal transplantation (RTx) model of chronic allograft nephropathy (CAN).
MATERIALS AND METHODS
Left renal grafts from male Fisher and Lewis were transplanted into Lewis rats, generating allografts and isografts, respectively. Blood pressure, renal function, and proteinuria were monitored for up to 52 weeks. At termination, CAN was assessed in the renal tissue by light and electron microscopy, TG2 and ε(γ-glutamyl)-lysine by immunofluorescence, and the urinary ε(γ-glutamyl)-lysine by high performance liquid chromatography.
RESULTS
Compared to the isograft, the allografts were hypertensive, proteinuric, and uraemic and developed CAN. Extracellular TG2 (glomerulus: 64.55 ± 17.61 versus 2.11 ± 0.17, P < 0.001; interstitium: 13.72 ± 1.62 versus 3.19 ± 0.44, P < 0.001), ε(γ-glutamyl)-lysine (glomerulus: 21.74 ± 2.71 versus 1.98 ± 0.37, P < 0.01; interstitium: 37.96 ± 17.06 versus 0.42 ± 0.11, P < 0.05), TG2 enzyme activity (1.09 ± 0.13 versus 0.41 ± 0.03 nmol/h/mg protein, P < 0.05), TG2 mRNA (20-fold rise), and urinary ε(γ-glutamyl)-lysine (534.2 ± 198.4 nmol/24 h versus 57.2 ± 4.1 nmol/24 h, P < 0.05) levels were significantly elevated in the allografts and showed a positive linear correlation with tubulointerstitial fibrosis.
CONCLUSION
CAN was associated with upregulation of renal TG2 pathway, which has a potential for pharmacological intervention. The elevated urinary ε(γ-glutamyl)-lysine, measured for the first time in RTx, is a potential biomarker of CAN.
Collapse