1
|
Analysis of the P 53N a Novel Protein Encoded on Chromosome 22q12.1-12.3 in Glioblastomas and Ependymomas Specimens. J Mol Neurosci 2021; 71:1714-1722. [PMID: 33595778 DOI: 10.1007/s12031-021-01808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
The P53N gene maps precisely to human chromosome sub-band 22q12.1-12.3, a region where loss of heterozygosity has been reported in 30% of astrocytic tumors and associated with progression to anaplasia. Moreover, a putative tumor suppressor gene has been indicated on 22q11 region involved in pathogenesis of ependymal tumors. Our objectives to examine the expression level of novel membrane-associated protein (termed P53N) encoded by a novel human gene on chromosome 22q12.1-12.3 in glioblastomas and ependymomas. Serial analysis of gene expression (SAGE) and immunofluorescence analysis of the P53N in the brain tumor tissues were performed. Our analysis revealed that there was high expression of the P53N mRNA in brain ependymoma and brain well-differentiated astrocytoma libraries. The P53N protein. P53N protein contains a high mobility group (HMG) domain at amino acid positions 301 to 360 expressed highly in glioblastoma and ependymoma specimens. Anti-P53N carboxyl-terminal peptide antibody localized the P53N protein to the cytoplasmic membranes of protoplasmic astrocytes in the glioblastoma and ependymoma specimens. These results are in good agreement with the SAGE analysis and the predicted transmembrane topology for the P53N protein and support a possible transmembrane model in which the P53N contains a predicted transmembrane region with its amino terminus localized to the inside of the cytoplasmic membrane.
Collapse
|
2
|
Lin Q, Liu Z, Ling F, Xu G. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication. Mol Med Rep 2015; 13:1329-35. [PMID: 26676970 DOI: 10.3892/mmr.2015.4680] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022] Open
Abstract
Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.
Collapse
Affiliation(s)
- Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100054, P.R. China
| | - Zhao Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100054, P.R. China
| | - Feng Ling
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100054, P.R. China
| | - Geng Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100054, P.R. China
| |
Collapse
|
3
|
Liu B, Guo Z, Dong H, Daofeng T, Cai Q, Ji B, Zhang S, Wu L, Wang J, Wang L, Zhu X, Liu Y, Chen Q. LRIG1, human EGFR inhibitor, reverses multidrug resistance through modulation of ABCB1 and ABCG2. Brain Res 2015; 1611:93-100. [PMID: 25801120 DOI: 10.1016/j.brainres.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/16/2023]
Abstract
In our previous study, we have found that leucine-rich repeats and immunoglobulin-like domains 1(LRIG1) can improve the chemosensitivity in U251 cells whereas the role of LRIG1 in multidrug resistance (MDR) remains unknown. Here, we reported that LRIG1 can reverse MDR by inhibiting epidermal growth factor (EGF) receptor (EGFR) and secondary inhibiting ATP-binding cassette, sub-family B member 1(ABCB1) and ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2). Our data showed that the expression of LRIG1 was significantly higher in O6-methylguanine DNA methyltransferase (MGMT) Promoter Methylation positive glioblastoma tissues compared to MGMT Promoter Methylation negative glioblastoma tissues. In addition, we found that LRIG1 expression was significantly decreased in MDR cells U251/TMZ compared to U251cells. Our results demonstrated that over-expression of LRIG1 can reverse the MDR. The expression of ABCB1 and ABCG2 were markedly suppressed when LRIG1 was over-expressed, supporting the negative relationship between LRIG1 level and ABCB1 and ABCG2 level in human specimen. Furthermore, we found that LRIG1 downregulated ABCB1 and ABCG2 through suppressing EGFR expression. In case of EGFR knockdown, the effect of LRIG1 on regulating MDR, ABCB1 and ABCG2 was partially compromised. Our results, for the first time, showed that LRIG1 can reverse MDR in glioblastoma, by negatively regulating EGFR and secondary suppressing the levels of ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Baohui Liu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Zhentao Guo
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Huimin Dong
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Tian Daofeng
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Qiang Cai
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Baowei Ji
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Shenqi Zhang
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Liquan Wu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Junmin Wang
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Long Wang
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Xiaonan Zhu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China
| | - Yue Liu
- Shiyan Taihe Hospital, Hubei University of Medicine, 32 South Renmin Street, Shiyan, Hubei 442000, China
| | - Qianxue Chen
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, China.
| |
Collapse
|
4
|
LRIG1 Improves Chemosensitivity Through Inhibition of BCL-2 and MnSOD in Glioblastoma. Cell Biochem Biophys 2014; 71:27-33. [DOI: 10.1007/s12013-014-0139-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Guo Z, Chen Q, Liu B, Tian D, Zhang S, Li M. LRIG1 enhances chemosensitivity by modulating BCL-2 expression and receptor tyrosine kinase signaling in glioma cells. Yonsei Med J 2014; 55:1196-205. [PMID: 25048475 PMCID: PMC4108802 DOI: 10.3349/ymj.2014.55.5.1196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) are an inhibitor of receptor tyrosine kinases (RTKs) that was discovered in recent years, and many studies showed that LRIG1 is a tumor suppressor gene and may be related to tumor drug resistance. In this study, we explored whether LRIG1 protein expression can improve the chemosensitivity of glioma cells and what was its mechanism. MATERIALS AND METHODS We collected 93 cases of glioma tissues and detected the expression of LRIG1 and BCL-2. We constructed a multidrug resistance cell line U251/multidrug resistance (MDR) and examined the change of LRIG1 and BCL-2 at mRNA and protein expression levels. LRIG1 expression was upregulated in U251/MDR cells and we detected the change of multidrug resistance. Meanwhile, we changed the expression of LRIG1 and BCL-2 and explored the relationship between LRIG1 and BCL-2. Finally, we also explored the relationship between LRIG1 and RTKs. RESULTS LRIG1 was negatively correlated with BCL-2 expression in glioma tissue and U251/MDR cells, and upregulation of LRIG1 can enhance chemosensitivity and inhibit BCL-2 expression. Furthermore, LRIG1 was negatively correlated with RTKs in U251/MDR cells. CONCLUSION These results demonstrated that LRIG1 can improve chemosensitivity by modulating BCL-2 expression and RTK signaling in glioma cells.
Collapse
Affiliation(s)
- Zhentao Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Refined brain tumor diagnostics and stratified therapies: the requirement for a multidisciplinary approach. Acta Neuropathol 2013; 126:21-37. [PMID: 23689616 DOI: 10.1007/s00401-013-1127-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
Individualized therapies are popular current concepts in oncology and first steps towards stratified medicine have now been taken in neurooncology through implementation of stratified therapeutic approaches. Knowledge about the molecular basis of brain tumors has expanded greatly in recent years and a few molecular alterations are studied routinely because of their clinical relevance. However, no single targeted agent has yet been fully approved for the treatment of glial brain tumors. In this review, we argue that multidisciplinary and integrated approaches are essential for translational research and the development of new treatments for patients with malignant gliomas, and we present a conceptual framework in which to place the components of such an interdisciplinary approach. We believe that this ambitious goal can be best realized through strong cooperation of brain tumor centers with local hospitals and physicians; such an approach enables close dialogue between expert subspecialty clinicians and local therapists to consider all aspects of this increasingly complex set of diseases.
Collapse
|
7
|
Liu B, Chen Q, Tian D, Wu L, Dong H, Wang J, Ji B, Zhu X, Cai Q, Wang L, Zhang S. BMP4 reverses multidrug resistance through modulation of BCL-2 and GDNF in glioblastoma. Brain Res 2013; 1507:115-24. [PMID: 23466456 DOI: 10.1016/j.brainres.2013.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/16/2013] [Accepted: 02/19/2013] [Indexed: 01/15/2023]
Abstract
Patients with glioblastoma are commonly treated with chemotherapy. But a significant proportion of patients develop disease progression after an initial response to chemotherapy. Presently, there is no standard of care for such patients. The bone morphogenetic protein 4 (BMP4) has been reported to play a tumor-suppressing role in glioblastoma, but its role in glioblastoma multidrug resistance (MDR) is not clear. We reported that BMP4 can reverse MDR of glioblastoma through the inhibition of B-cell lymphoma 2(BCL-2) and glial cell derived neurotrophic factor (GDNF). We showed that the expression level of BMP4 was lower in glioblastoma compared to normal brain tissue, and also showed that BMP4 expression decreased in multidrug resistance cell line U251/TMZ compared to U251 cells. Our research demonstrated that over-expression of BMP4 can reverse the multidrug resistance. BCL-2 and GDNF were inhibited when BMP4 was over-expressed, and this data were consistent with the negative relationship in human samples; analysis of 40 patient's glioblastoma and brain samples revealed a significant negative correlation between BMP4 and BCL-2, GDNF. When BCL-2 and GDNF were knocked down, the effect of BMP4 in regulating MDR was partially lost. This novel result showed, for the first time, that BMP4 can reverse MDR in glioblastoma, which involved negative inhibition of BCL-2 and GDNF.
Collapse
Affiliation(s)
- Baohui Liu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan 430060, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr Oncol Rep 2006; 8:58-70. [PMID: 16464405 DOI: 10.1007/s11912-006-0011-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malignant gliomas are the most common form of primary brain tumors in adults. Despite advances in diagnosis and standard therapies such as surgery, radiation, and chemotherapy, the prognosis remains poor. Recent scientific advances have enhanced our understanding of the biology of gliomas and the role of tyrosine kinase receptors and signal transduction pathways in tumor initiation and maintenance, such as the epidermal growth factor receptors, platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and the Ras/Raf/mitogen-activated protein (MAP)-kinase and phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways. Novel targeted drugs such as small molecular inhibitors of these receptors and signaling pathways are showing some activity in initial studies. As we learn more about these drugs and how to optimize their use as single agents and in combination with radiation, chemotherapy, and other targeted molecular agents, they will likely play an increasing role in the management of this devastating disease. This review summarizes the current results with targeted molecular agents in malignant gliomas and strategies under evaluation to increase their effectiveness.
Collapse
Affiliation(s)
- Santosh Kesari
- Center For Neuro-Oncology, Dana Farber/Brigham and Women's Cancer Center, SW430D, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
9
|
Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr Neurol Neurosci Rep 2005; 5:186-97. [PMID: 15865884 DOI: 10.1007/s11910-005-0046-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common form of primary brain tumors in adults. Despite advances in diagnosis and standard therapies such as surgery, radiation, and chemotherapy, the prognosis remains poor. Recent scientific advances have enhanced our understanding of the biology of gliomas and the role of tyrosine kinase receptors and signal transduction pathways in tumor initiation and maintenance, such as the epidermal growth factor receptors, platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and the Ras/Raf/mitogen-activated protein (MAP)-kinase and phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways. Novel targeted drugs such as small molecular inhibitors of these receptors and signaling pathways are showing some activity in initial studies. As we learn more about these drugs and how to optimize their use as single agents and in combination with radiation, chemotherapy, and other targeted molecular agents, they will likely play an increasing role in the management of this devastating disease. This review summarizes the current results with targeted molecular agents in malignant gliomas and strategies under evaluation to increase their effectiveness.
Collapse
Affiliation(s)
- Santosh Kesari
- Center for Neuro-Oncology, Dana Farber/Brigham and Women's Cancer Center, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
10
|
Jennings MT, Iyengar S. Pharmacotherapy of malignant astrocytomas of children and adults: current strategies and future trends. CNS Drugs 2002; 15:719-43. [PMID: 11580310 DOI: 10.2165/00023210-200115090-00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This article reviews the conceptual progression in the pharmacological therapy of malignant astrocytoma (MA) over the past decade, and its future trends. It is a selective rather than an exhaustive inventory of literature citations. The experience of the Brain Tumour Cooperative Group (BTCG) and earlier phase III trials are summarised to place subsequent phase II and I studies of single and combination agent chemotherapy in perspective. The BTCG experience of the 1970s to 1980s may be summarised to indicate that external beam radiotherapy (EBRT) is therapeutic, although not curative, and not further improved upon by altering fractionation schedules, or the addition of radioenhancers. Whole brain and reduced whole brain EBRT with focal boost were comparable regimens. Nitrosourea-based, adjuvant chemotherapy provided a modest improvement in survival among adult patients, which was comparable with that of other single drugs or multidrug regimes. The multiagent schedules, however, had a correspondingly higher toxicity rate. Intra-arterial administration was associated with significant risk, which conferred no therapeutic advantage. The trend of the past decade has been towards multiagent chemotherapy although its benefit cannot be predicted from the classic prognostic factors. Published experience with investigational trials utilising myeloablative chemotherapy with autologous bone marrow or peripheral blood stem cell haemopoietic support, drug delivery enhancement methods and radiosensitisers is critically reviewed. None of these approaches have achieved wide-spread acceptance in the treatment of adult patients with MA. Greater attention is placed on recent 'chemoradiotherapy' trials, which attempt to integrate and maximise the cytoreductive potential of both modalities. This approach holds promise as an effective means to delay or overcome the evolution of tumour resistance, which is probably one of the dominant determinants of prognosis. However, the efficacy of this approach remains unproven. New chemotherapeutic agents as well as biological response modifiers, protein kinase inhibitors, angiogenesis inhibitors and gene therapy are also discussed; their role in the therapeutic armamentarium has not been defined.
Collapse
Affiliation(s)
- M T Jennings
- Vanderbilt Ingram Cancer Center, Vanderbilt Medical School, 2100 Pierce Avenue, Nashville, TN 37205-3375, USA
| | | |
Collapse
|