1
|
Bhadouria N, Yadav S, Bukke SPN, Narapureddy BR. Advancements in vaccine delivery: harnessing 3D printing for microneedle patch technology. Ann Med Surg (Lond) 2025; 87:2059-2067. [PMID: 40212146 PMCID: PMC11981410 DOI: 10.1097/ms9.0000000000003060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/31/2025] [Indexed: 04/13/2025] Open
Abstract
The development of 3D-printed microneedle (MN) technology is a significant step in vaccine delivery, providing a painless, effective, and adaptable substitute for conventional injection-based techniques. Direct transdermal vaccination distribution without the need for needles is made possible by microneedle patches, which employ a variety of tiny needles that dissolve when they penetrate the skin. By using 3D printing to precisely customise microneedles' size, shape, and density to meet particular vaccine requirements, administration control can be improved and vaccine efficiency may even be increased. Furthermore, rapid prototyping made possible by 3D printing speeds up the development process, enabling quicker testing and improvement of vaccines. Additionally, this scalable technology can greatly increase vaccine accessibility, particularly in environments with limited resources. Research indicates that by directly interacting with the skin's immune-rich layers, microneedle patches enhance antigen delivery and elicit a strong immune response. Because MN technology offers a useful, self-administrable vaccination approach with little waste, it has significant potential for use in public health applications, notably during pandemics. This study emphasises how 3D-printed microneedle patches have the potential to revolutionise vaccination procedures and increase vaccine accessibility globally.
Collapse
Affiliation(s)
- Namrata Bhadouria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Recent advances in nano/microparticle-based oral vaccines. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:425-438. [PMID: 34150345 PMCID: PMC8196935 DOI: 10.1007/s40005-021-00537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Background Vaccines are often recognized as one of the most cost-effective public health interventions in controlling infectious diseases. Most pathogens infiltrate the body from mucosal sites, primarily from the oral and pulmonary region and reach the systemic circulation where disease manifestation starts. Traditional needle-based vaccines are usually not capable of inducing immunity at the mucosal sites where pathogen infiltrates start, but induces systemic immunity. In contrast to needle-based vaccines, mucosally administered vaccines induce immunity at both the mucosal sites and systemically. The oral route of immunization is the most convenient way to administer the vaccines. However, due to the complicated and hostile gastrointestinal structure and environment, vaccines need to overcome major hurdles while retaining their stability and immunogenicity. Area covered This review will briefly discuss different barriers to oral vaccine development. It gives a brief overview of different types of nano/microparticle-based oral vaccines and discusses how physicochemical characteristics of the particles influence overall immunity after oral immunization. Expert opinion Formulation strategies using novel lipid and polymer-based nano/microparticle platforms retain stability and antigenicity of vaccines against the harsh gastrointestinal condition. The physicochemical properties of particles can be uniquely tailored to prolong the release of antigens, and attached ligands (M-cells and APC-ligands) can precisely target uptake by immune cells. These represent viable strategies for efficient delivery of oral vaccines.
Collapse
|
4
|
Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017; 114:116-131. [PMID: 28438674 PMCID: PMC6132247 DOI: 10.1016/j.addr.2017.04.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
While vaccination remains the most cost effective strategy for disease prevention, communicable diseases persist as the second leading cause of death worldwide. There is a need to design safe, novel vaccine delivery methods to protect against unaddressed and emerging diseases. Development of vaccines administered orally is preferable to traditional injection-based formulations for numerous reasons including improved safety and compliance, and easier manufacturing and administration. Additionally, the oral route enables stimulation of humoral and cellular immune responses at both systemic and mucosal sites to establish broader and long-lasting protection. However, oral delivery is challenging, requiring formulations to overcome the harsh gastrointestinal (GI) environment and avoid tolerance induction to achieve effective protection. Here we address the rationale for oral vaccines, including key biological and physicochemical considerations for next-generation oral vaccine design.
Collapse
Affiliation(s)
- Julia E Vela Ramirez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Lindsey A Sharpe
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Clements CJ, Wesselingh SL. Vaccine presentations and delivery technologies – what does the future hold? Expert Rev Vaccines 2014; 4:281-7. [PMID: 16026244 DOI: 10.1586/14760584.4.3.281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an urgent need to change the presentations and delivery technologies of current vaccines. Until recently, these factors had not been key criteria in the selection of vaccines for program use. Recent and current changes in the field of vaccines and their delivery lead the authors to postulate that a major paradigm shift will take place over the next decade to revolutionize vaccine presentation and delivery in national immunization programs. The programmatic needs for certain vaccine presentations will increasingly dictate elements of vaccine development and manufacture. Over the next decade, an inexorable drift towards firstly, single-dose preparations, and secondly, delivery technologies other than the conventional needle and syringes is anticipated. A unified system capable of delivering multiple antigens as a single dose is urgently needed; however, changing the status quo of vaccine manufacture is not easy. The market predominantly produces vaccines delivered by needle and syringe. Profits for manufacturers from sales to developing countries are marginal at best, and there is little financial incentive to change. Global leaders will need to take bold decisions and begin demanding vaccines which have a presentation that lends them to safer, more practical delivery systems. If a strong enough case can be made to restructure the vaccine manufacturing industry, either through market forces, global bodies, such as the World Health Organization and the United Nations Children's Fund, or both, a dramatic change could be brought about that will make vaccine delivery simpler and safer. A globally coordinated approach to funding research and the introduction of a multiple-antigen, single-dose delivery system is urgently needed. The needs are clear, and this review argues that if the case is presented strongly enough, the resources will be found.
Collapse
Affiliation(s)
- C John Clements
- Centre for International Health, The Macfarlane Burnet Institute for Medical Research and Public Health Ltd, GPO Box 2284, Commercial Road, Melbourne, VIC 3004, Australia.
| | | |
Collapse
|
6
|
Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Consideration of the efficacy of non-ionic vesicles in the targeted delivery of oral vaccines. Drug Deliv Transl Res 2013; 4:233-45. [DOI: 10.1007/s13346-013-0174-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Abstract
Whilst oral vaccination is a potentially preferred route in terms of patient adherence and mass vaccination, the ability to formulate effective oral vaccines remains a challenge. The primary barrier to oral vaccination is effective delivery of the vaccine through the GI tract owing to the many obstacles it presents, including low pH, enzyme degradation and bile-salt solubilization, which can result in breakdown/deactivation of a vaccine. For effective immune responses after oral administration, particulates need to be taken up by the M cells however, these are few in number. To enhance M-cell uptake, particle characteristics can be optimized with particle size, surface charge, targeting groups and bioadhesive properties all being considerations. Yet improved uptake may not translate into enhanced immune responses and formulating particulates with inherent adjuvant properties can offer advantages. Within this article, we establish the options available for consideration when building effective oral particulate vaccines.
Collapse
|
8
|
Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010; 62:394-407. [PMID: 19931581 DOI: 10.1016/j.addr.2009.11.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 09/14/2009] [Indexed: 12/29/2022]
Abstract
The current prevalence of infectious diseases in many developing regions of the world is a serious burden, impacting both the general health as well as economic growth of these communities. Additionally, treatment with conventional medication becomes increasingly challenging due to emergence of new and drug resistant strains jeopardizing the progress made in recent years towards control and elimination of certain types of infectious diseases. Thus, from a public health perspective, prevention such as through immunization by vaccination, which has proven to be most effective, might be the best alternative to prevent and combat infectious diseases in these regions. To achieve this, development of wide-scale immunization programs become necessary including vaccines that can easily and widely be distributed, stored and administered. Mucosal vaccines offer great potential since they can be administered via oral or intranasal delivery route which does not require trained personnel, avoids the use of needles and improves overall patient compliance and acceptance. However, it necessitates the implementation of specific immunization strategies to improve their efficacy. Application of nanotechnology to design and create particle mediated delivery systems that can efficiently encapsulate vaccine components for protection of the sensitive payload, target the mucosal immune system and incorporate mucosal adjuvants maximizing immune response is key strategy to improve the effectiveness of mucosal vaccines.
Collapse
|
9
|
Chadwick S, Kriegel C, Amiji M. Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther 2009; 9:427-40. [DOI: 10.1517/14712590902849224] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Abstract
Efforts to improve oral drug bioavailability have grown in parallel with the pharmaceutical industry. As the number and chemical diversity of drugs has increased, new strategies have been required to develop orally active therapeutics. The past two decades have been characterised by an increased understanding of the causes of low bioavailability and a great deal of innovation in oral drug delivery technologies, marked by an unprecedented growth of the drug delivery industry. The advent of biotechnology and consequent proliferation of biopharmaceuticals have brought new challenges to the drug delivery field. In spite of the difficulties associated with developing oral forms of this type of therapeutics, significant progress has been made in the past few years, with some oral proteins, peptides and other macromolecules currently advancing through clinical trials. This article reviews the approaches that have been successfully applied to improve oral drug bioavailability, primarily, prodrug strategies, lead optimisation through medicinal chemistry and formulation design. Specific strategies to improve the oral bioavailability of biopharmaceuticals are also discussed.
Collapse
|