1
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
2
|
Blue–yellow dyschromatopsia in toluene-exposed workers. Int Arch Occup Environ Health 2019; 92:699-707. [DOI: 10.1007/s00420-019-01405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
3
|
Werder EJ, Engel LS, Richardson DB, Emch ME, Gerr FE, Kwok RK, Sandler DP. Environmental styrene exposure and neurologic symptoms in U.S. Gulf coast residents. ENVIRONMENT INTERNATIONAL 2018; 121:480-490. [PMID: 30278311 PMCID: PMC6712572 DOI: 10.1016/j.envint.2018.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Styrene is an established neurotoxicant at occupational levels, but effects at levels relevant to the general population have not been studied. We examined the neurologic effects of environmental styrene exposure among U.S. Gulf coast residents. METHODS We used National Air Toxics Assessment (NATA) 2011 estimates of ambient styrene concentrations to assign exposure levels for 21,962 non-diabetic Gulf state residents, and additionally measured blood styrene concentration in a subset of participants (n = 874). Neurologic symptoms, as well as detailed covariate information, were ascertained via telephone interview. We used log-binomial regression to estimate prevalence ratios (PR) and 95% confidence intervals (95% CI) for cross-sectional associations between both ambient and blood styrene levels and self-reported neurologic symptoms. We estimated associations independently for ten unique symptoms, as well as for the presence of any neurologic, central nervous system (CNS), or peripheral nervous system (PNS) symptoms. We also examined heterogeneity of associations with estimated ambient styrene levels by race and sex. RESULTS One-third of participants reported at least one neurologic symptom. The highest quartile of estimated ambient styrene was associated with one or more neurologic (PR, 1.12; 95% CI: 1.07,1.18), CNS (PR, 1.17; 95% CI: 1.11,1.25), and PNS (PR, 1.16; 95% CI: 1.09,1.25) symptom. Results were less consistent for biomarker analyses, but blood styrene level was suggestively associated with nausea (PR, 1.78; 95% CI: 1.04, 3.03). In stratified analyses, we observed the strongest effects among non-White participants. CONCLUSIONS Increasing estimated ambient styrene concentration was consistently associated with increased prevalence of neurologic symptoms. Associations between blood styrene levels and some neurologic symptoms were suggestive. Environmental styrene exposure levels may be sufficient to elicit symptomatic neurotoxic effects.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America; Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America; Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - David B Richardson
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Michael E Emch
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Fredric E Gerr
- Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, IA, United States of America
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America.
| |
Collapse
|
4
|
Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of Long-Evans rats. Neurotoxicology 2016; 53:257-270. [PMID: 26899397 DOI: 10.1016/j.neuro.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000ppm toluene by inhalation (6hr/d, 5d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m(2)) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000ppm toluene for 4 weeks were tested approximately 1year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic connections. These data provide experimental evidence that repeated exposure to toluene may lead to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the rat visual cortex.
Collapse
|
5
|
Fox DA. Retinal and visual system: occupational and environmental toxicology. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:325-40. [PMID: 26563796 DOI: 10.1016/b978-0-444-62627-1.00017-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders.
Collapse
Affiliation(s)
- Donald A Fox
- Departments of Vision Sciences, Biology and Biochemistry, Pharmacology, and Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Juran SA, Johanson G, Ernstgård L, Iregren A, van Thriel C. Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content. Arch Toxicol 2014; 88:1127-40. [DOI: 10.1007/s00204-014-1236-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
|
7
|
Flatla DR, Gutwin C. Situation-Specific Models of Color Differentiation. ACM TRANSACTIONS ON ACCESSIBLE COMPUTING 2012. [DOI: 10.1145/2399193.2399197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Color is commonly used to represent categories and values in computer applications, but users with Color-Vision Deficiencies (CVD) often have difficulty differentiating these colors. Recoloring tools have been developed to address the problem, but current recolorers are limited in that they work from a model of only one type of congenital CVD (i.e., dichromatism). This model does not adequately describe many other forms of CVD (e.g., more common congenital deficiencies such as anomalous trichromacy, acquired deficiencies such as cataracts or age-related yellowing of the lens, or temporary deficiencies such as wearing tinted glasses or working in bright sunlight), and so standard recolorers work poorly in many situations. In this article we describe an alternate approach that can address these limitations. The new approach, called Situation-Specific Modeling (SSM), constructs a model of a specific user’s color differentiation abilities in a specific situation, and uses that model as the basis for recoloring digital presentations. As a result, SSM can inherently handle all types of CVD, whether congenital, acquired, or environmental. In this article we describe and evaluate several models that are based on the SSM approach. Our first model of individual color differentiation (called ICD-1) works in RGB color space, and a user study showed it to be accurate and robust (both for users with and without congenital CVD). However, three aspects of ICD-1 were identified as needing improvement: the calibration step needed to build the situation-specific model, and the prediction steps used in recoloring were too slow for real-world use; and the results of the model’s predictions were too coarse for some uses. We therefore developed three further techniques: ICD-2 reduces the time needed to calibrate the model; ICD-3 reduces the time needed to make predictions with the model; and ICD-4 provides additional information about the degree of differentiability in a prediction. Our final result is a model of the user’s color perception that handles any type of CVD, can be calibrated in two minutes, and can find replacement colors in near-real time (
~
1 second for a 64-color image). The ICD models provide a tool that can greatly improve the perceptibility of digital color for many different types of CVD users, and also demonstrates situation-specific modeling as a new approach that can broaden the applicability of assistive technology.
Collapse
|
8
|
Storm JE, Mazor KA, Aldous KM, Blount BC, Brodie SE, Serle JB. Letter to the editor: "Review of the epidemiologic literature on residential exposure to perchloroethylene" by John A. Bukowski. Crit Rev Toxicol 2012; 42:314-7; author reply 318-21. [PMID: 22469066 DOI: 10.3109/10408444.2012.663745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
van Valen E, van Thriel C, Akila R, Nilson LN, Bast-Pettersen R, Sainio M, van Dijk F, van der Laan G, Verberk M, Wekking E. Chronic solvent-induced encephalopathy: European consensus of neuropsychological characteristics, assessment, and guidelines for diagnostics. Neurotoxicology 2012; 33:710-26. [PMID: 22498091 DOI: 10.1016/j.neuro.2012.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/09/2012] [Accepted: 03/24/2012] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The presence of neuropsychological impairment is a hallmark of chronic solvent-induced encephalopathy (CSE), and using clinical neuropsychological procedures to generate a valid assessment of the condition is crucial for its diagnosis. The goals of this consensus document are to provide updated knowledge of the neuropsychological characteristics of CSE and to provide internationally acceptable guidelines for using neuropsychological assessments in the process of diagnosing patients who are suspected of having CSE. MATERIALS AND METHODS A European working group that was composed of experts in the field of the clinical diagnosis of CSE met at several round-table meetings and prepared this report. The first section of the consensus paper addresses a review of the relevant literature that was published between 1985 and March 2012. The second section addresses recommendations for the clinical neuropsychological assessment of patients who are suspected of having CSE. RESULTS The literature review indicates that the most common neuropsychological impairments in CSE patients are within the domains of attention, particularly the speed of information processing, memory, and motor performance. It appears that the influence of CSE on memory processes mainly involves immediate recall and generally involves verbal, visual and visuospatial material. In the second section, six recommendations are presented regarding important functional domains for the neuropsychological diagnostic process of CSE that relate to the evaluation of neuropsychological impairment, the assessment and evaluation of symptoms, differential diagnostic considerations, the reliability and validity of neuropsychological test results, and the retesting of patients. DISCUSSION AND CONCLUSIONS These recommendations will contribute to the improvement of the process for accurately diagnosing CSE, better counselling for CSE patients, the comparability of epidemiological data between countries, and finally, by raising awareness, these recommendations will contribute to combating the adverse health effects of occupational exposure to solvents.
Collapse
Affiliation(s)
- Evelien van Valen
- Netherlands Center for Occupational Diseases, Coronel Institute of Occupational Health, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bukowski JA. Response to letter from J.E. Storm and colleagues concerning the paper “Review of the epidemiologic literature on residential exposure to perchloroethylene”. Crit Rev Toxicol 2012. [DOI: 10.3109/10408444.2012.663746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Beasley TE, Evansky PA, Bushnell PJ. Behavioral effects of sub-acute inhalation of toluene in adult rats. Neurotoxicol Teratol 2012; 34:83-9. [DOI: 10.1016/j.ntt.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
12
|
Beasley TE, Evansky PA, Gilbert ME, Bushnell PJ. Behavioral effects of subchronic inhalation of toluene in adult rats. Neurotoxicol Teratol 2010; 32:611-9. [DOI: 10.1016/j.ntt.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/07/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
13
|
Occupational exposure to different levels of mixed organic solvents and colour vision impairment. Neurotoxicol Teratol 2010; 32:558-62. [DOI: 10.1016/j.ntt.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 11/19/2022]
|
14
|
Seeber A, Bruckner T, Triebig G. Occupational styrene exposure, colour vision and contrast sensitivity: a cohort study with repeated measurements. Int Arch Occup Environ Health 2009; 82:757-70. [PMID: 19330514 DOI: 10.1007/s00420-009-0416-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 03/10/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Associations between occupational styrene exposures and impairment of visual functions were investigated with a view to answering three questions: (1) are the published findings for colour vision deficiencies and impaired contrast sensitivity to reproduce in a new study approach, (2) if such effects exist, are they related to current or chronic exposures and (3) if effects exist, are there reductions in the effects during an exposure-free period? METHODS Workers from a boat building plant were examined in groups of current low [n = 97, mean mandelic acid (MA) + phenylglyoxylic acid (PGA) = 51 mg/g creatinine], medium (n = 115, mean = 229 mg/g creatinine) and high (n = 30, mean = 977 mg/g creatinine) level exposure to styrene. Job tenure was about 6 years. In addition, subgroups chronically exposed to low-short (n = 34, lifetime weighted mean 200 mg/g creatinine for 6 years) and high-long (n = 17, mean = 660 mg/g creatinine, 15 years) styrene levels were analysed. The examinations were carried out during normal working days and during the company holidays. Colour vision was investigated with the Lanthony desaturated panel D-15d using the colour confusion index (CCI) as a relevant variable. Contrast sensitivity was investigated with the Vistech charts VCTS 6500 using frequency-related results as well as total scores as variables. Co-variance analyses with repeated measurements and multiple linear regressions were used for statistical analysis. RESULTS There was no evidence of significant associations between exposure parameters and CCI. This is true for the analyses with all participants as well as for those with the subgroups with high-long versus low-short exposure. Thus, no exposure related changes in the relevant variables were found during the exposure-free period. The analyses for contrast sensitivity show similar results. The largest portions of the variances in both tests were explained by age. German as mother tongue covered a considerable portion of the CCI variances. Education, long-term alcohol use and job tenure explain only partly significant portions of the test variances exhibited. CONCLUSION Both acute styrene exposure levels of 40 ppm (range of standard deviation up to 54 ppm) and long term exposures to 27 ppm (range of standard deviation up to 44 ppm with higher exposure levels in the past) for a period of about 15 years were not identified as causing elevated risks for the investigated parameters of colour vision and contrast sensitivity. This statement contradicts the published results for styrene-related colour vision deficiencies but it seems to be compatible with published results for contrast sensitivity due to styrene exposure.
Collapse
Affiliation(s)
- Andreas Seeber
- Institute of Occupational Physiology, University of Dortmund, Dortmund, Germany
| | | | | |
Collapse
|
15
|
Sato T, Kishi R, Gong Y, Katakura Y, Kawai T. Effects of styrene exposure on vibration perception threshold. Neurotoxicology 2009; 30:97-102. [DOI: 10.1016/j.neuro.2008.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 10/20/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
16
|
Lee EH, Eum KD, Cho SI, Cheong HK, Paek DM. Acquired dyschromatopsia among petrochemical industry workers exposed to benzene. Neurotoxicology 2007; 28:356-63. [PMID: 16806479 DOI: 10.1016/j.neuro.2006.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Exposure to organic solvents, which are widely used in industry, can lead to dysfunction of the nervous system. However, controversy continues about the nature of early-stage damage to the nervous system from low-grade chronic exposure to organic solvents. Since loss of color-vision can be a sensitive early marker of neurotoxic damage, the main aim of this study was to investigate the association between low-level chronic exposure to organic solvents, especially benzene, and acquired dyschromatopsia. The study initially comprised 1236 workers who were employed at a large petrochemical distillation factory. After excluding those workers who may have had color-vision impairment due to congenital or acquired eye diseases and those with other medical conditions, 908 males who had worked for at least 6 months were included in the final analysis. Those who worked only in the office were categorized as nonexposed, while those who worked at outside facilities were divided into three groups of approximately equal size according to their estimated cumulative exposure levels to benzene (low, medium, high). Color-vision was assessed using the Lanthony D-15 desaturated panel color test. The results showed that the color-confusion index (CCI) was positively related to age. In the qualitative assessment of types of color-vision loss, the prevalence of total dyschromatopsia was significantly higher with increasing cumulative exposure levels in the left eye (p<0.05) but not in the right eye. The significance for the prevalence of type III dyschromatopsia was borderline in the left eye (p=0.0571). The relationship between acquired dyschromatopsia and exposure level also showed an increase in the odds ratio in the left eye but not in the right eye. Taken together, these results suggest that chronic low-level exposure to benzene can lead to acquired dyschromatopsia.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Environmental Health, School of Public Health, Seoul National University, 28 YeonKeon-Dong, Jongro-Gu, Seoul 110-799, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Gagnaire F, Chalansonnet M, Carabin N, Micillino JC. Effects of subchronic exposure to styrene on the extracellular and tissue levels of dopamine, serotonin and their metabolites in rat brain. Arch Toxicol 2006; 80:703-12. [PMID: 16518643 DOI: 10.1007/s00204-006-0083-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 02/20/2006] [Indexed: 11/25/2022]
Abstract
At present, there is controversy over the neurotoxic potential of styrene. Several epidemiological and clinical studies have shown that styrene exposure causes alterations of central nervous system functions in humans. Neurotransmitters have been implicated in the pathogenesis of styrene neurotoxicity in rodents. Several studies carried out on postmortem brain tissue suggest that styrene may alter dopaminergic neurotransmission in rabbit or rat brain. Moreover, in vitro studies suggest that both styrene and styrene oxide inhibit the uptake of dopamine (DA) in purified synaptic vesicles prepared from rat brain striata. To date, biochemical studies on animals have explored global tissue levels of neurotransmitters with sub-acute exposures to styrene. However, extracellular levels of neurotransmitters are more closely related to behaviour than are global tissue levels. The present study determined changes in the extracellular concentrations of DA, serotonin (5-HT) and their acid metabolites, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA), in striatal dialysates from freely moving adult male rats after exposure to 750 and 1,000 ppm styrene, 6 h per day, 5 days per week for 4 weeks. We also determined the concentrations of DA, 5-HT and their acid metabolites in striatum, nucleus accumbens and prefrontal cortex obtained postmortem from similarly exposed rats. Exposure to 1,000 ppm of styrene caused a significant decrease in extracellular acid metabolite concentrations. Tissue levels of acid metabolites were also decreased to a lesser extent. The effects were observed 72 h after discontinuing exposure but had vanished 17 days later. There was no change in DA or 5-HT concentrations either in the dialysates or tissues. Exposure to 750 ppm styrene caused no changes in the concentrations of DA, 5-HT and their acid metabolites either in the dialysates or tissues. The possibility that the effect of styrene is mediated by monoamine oxidase (MAO) inhibition is discussed.
Collapse
Affiliation(s)
- F Gagnaire
- Département Polluants et Santé, Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27, 54501, Vandoeuvre cedex, France.
| | | | | | | |
Collapse
|