1
|
Wang L, Jiang S, Zhou J, Gholipourmalekabadi M, Cao Y, Lin K, Zhuang Y, Yuan C. From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications. Bioact Mater 2025; 49:85-120. [PMID: 40124596 PMCID: PMC11928986 DOI: 10.1016/j.bioactmat.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jialiang Zhou
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yuan Cao
- Colorado College, 819 N Tejon Street Box 56, Colorado Springs, 80903, Colorado, USA
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
2
|
Lim H, Seo Y, Min SJ, Yoo D, Heo DN, Kwon IK, Lee T. Construction of Chitosan Oligosaccharide-Coated Nanostructured Lipid Carriers for the Sustained Release of Strontium Ranelate. Tissue Eng Regen Med 2025:10.1007/s13770-025-00713-0. [PMID: 40072819 DOI: 10.1007/s13770-025-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS). METHODS To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer. The synthesis of COS-NLC was confirmed by measuring particle size and zeta potential, while surface morphology was evaluated using atomic force microscopy (AFM). SR loading efficiencies and release profiles were analyzed via reversed-phase high-performance liquid chromatography (RP-HPLC), and cytotoxicity was evaluated in mouse fibroblast L929 cells. RESULTS Particle characterization indicated that the COS coating slightly increased the particle size (i.e., from 128.99 ± 2.77 to 131.46 ± 2.13 nm) and zeta potential (i.e., from - 13.94 ± 0.49 to - 6.58 ± 0.32 mV) of the NLC. The COS-NLC exhibited a high SR-loading efficiency of ~ 86.31 ± 3.28%. An in vitro release test demonstrated an improved sustained release tendency of SR from the COS-NLC compared to that from the uncoated NLC. In cytotoxicity assays using L929 cells, the COS coating reduced the cytotoxicity of the formulated DDS, and the SR-COS-NLC exhibited a 1.4-fold higher cell regeneration effect than SR alone. CONCLUSION These findings suggest that the developed COS-NLC serve as an effective and biocompatible DDS platform for the delivery of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdae-mun-Gu, Seoul, 02447, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
3
|
Wang S, Xia D, Dou W, Chen A, Xu S. Bioactive Porous Composite Implant Guides Mesenchymal Stem Cell Differentiation and Migration to Accelerate Bone Reconstruction. Int J Nanomedicine 2024; 19:12111-12127. [PMID: 39583325 PMCID: PMC11586122 DOI: 10.2147/ijn.s479893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background Delayed healing and non-healing of bone defects pose significant challenges in clinical practice, with metal materials increasingly recognized for their significance in addressing these issues. Among these materials, Strontium (Sr) and Zinc (Zn) have emerged as promising agents for promoting bone repair. Building upon this insight, this research evaluates the impact of a porous Sr@Zn@SiO2 nanocomposite implant on bone regeneration, aiming to advance the field of bone repair. Methods The preparation of the Sr@Zn@SiO2 composite implant involves various techniques such as roasting, centrifugation, and washing. The material's composition is examined, and its microstructure and element distribution are analyzed using TEM and elemental scanning technology. In vitro experiments entail the isolation and characterization of BMSCs followed by safety assessments of the implant material, evaluation of cell migration capabilities, and relevant proliferation markers. Mechanistically, this study delves into key targets associated with significant changes in the osteogenic process. In vivo experiments involve establishing a rat femur bone defect model, followed by assessment of the osteogenic potential of Sr@Zn@SiO2 using Micro-CT imaging and tissue section staining. Results Through in vivo and in vitro investigations, we validate the osteogenic efficacy of the Sr@Zn@SiO2 composite implant. In vitro analyses demonstrate that porous Sr@Zn@SiO2 nanocomposite materials upregulate BMP-2 expression, leading to the activation of Smad1/5/9 phosphorylation and subsequent activation of downstream osteogenic genes, culminating in BMSCs osteogenic differentiation and bone proliferation. And the migration of BMSCs is closely related to the high expression of CXCL12/CXCR4, which will also provide the conditions for osteogenesis. In vivo, the osteogenic ability of Sr@Zn@SiO2 was also confirmed in rats. Conclusion In our research, the porous Sr@Zn@SiO2 composite implant displays prominent osteogenic effect and promotes the migration and differentiation of BMSCs to promote bone defect healing. This bioactive implant has surgical application potential in the future.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Demeng Xia
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Clinical Medicine, Hainan Health Vocational College, Haikou, 570100, People’s Republic of China
| | - Wenxue Dou
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People’s Republic of China
| | - Aimin Chen
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Shuogui Xu
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
4
|
Byeon SM, Bae TS, Lee MH, Ahn SG. Guided bone regeneration of calcium phosphate-coated and strontium ranelate-doped titanium mesh in a rat calvarial defect model. J Periodontal Implant Sci 2024; 54:336-348. [PMID: 38290999 PMCID: PMC11543329 DOI: 10.5051/jpis.2303000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024] Open
Abstract
PURPOSE When applied alone, titanium (Ti) mesh may not effectively block the penetration of soft tissues, resulting in insufficient new bone formation. This study aimed to confer bioactivity and improve bone regeneration by doping calcium phosphate (CaP) precipitation and strontium (Sr) ranelate onto a TiO₂ nanotube (TNT) layer on the surface of a Ti mesh. METHODS The TNT layer was obtained by anodizing on the Ti mesh, and CaP was formed by cyclic pre-calcification. The final specimens were produced by doping with Sr ranelate. The surface properties of the modified Ti mesh were investigated using high-resolution field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. To evaluate the effects of surface treatment on cell viability, osteoblasts were cultured for 1-3 days, and their absorbance was subsequently measured. In an in vivo experiment, critical-size defects were created in rat calvaria (Ф=8 mm). After 5 weeks, the rats were sacrificed (n=4 per group) and bone blocks were taken for micro-computed tomography and histological analysis. RESULTS After immersing the Sr ranelate-doped Ti mesh in simulated body fluid, the protrusions observed in the initial stage of hydroxyapatite were precipitated as a dense structure. On day 3 of osteoblast culture, cell viability was significantly higher on the pre-calcified Sr ranelate-doped Ti mesh surface than on the untreated Ti mesh surface (P<0.05). In the in vivo experiment, a bony bridge formed between the surrounding basal bone and the new bone under the Sr ranelate-doped Ti mesh implanted in a rat calvarial defect, closing the defect. New bone mineral density (0.91±0.003 g/mm³) and bone volume (29.35±2.082 mm³) significantly increased compared to the other groups (P<0.05). CONCLUSIONS Cyclic pre-calcification of a Ti mesh with a uniform TNT layer increased bioactivity, and subsequent doping with Sr ranelate effectively improved bone regeneration in bone defects.
Collapse
Affiliation(s)
- Seon Mi Byeon
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Tae Sung Bae
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Min Ho Lee
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Seung Geun Ahn
- Department of Prosthodontics, School of Dentistry, Jeonbuk National University, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
5
|
Mohaghegh S, Fathi H, Molaasadollah F, Teimoori M, Chiniforush N, Taghipour N, Shekarchi F, Nokhbatolfoghahaei H. Evaluating the effect of strontium ranelate and photobiomodulation on cementogenic and osteogenic differentiation of buccal fat pad-derived stem cells: An in vitro study. Photochem Photobiol 2024; 100:1419-1430. [PMID: 38234287 DOI: 10.1111/php.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to analyze the impact of strontium ranelate (Str), photobiomodulation (PBM), or their combination of the proliferation, osteogenic differentiation, and cementogenic differentiation of buccal fat pad-derived stem cells. BFPdSCs were exposed to one of the following interventions: (1) PBM (660 nm), (2) PBM (660 nm) + Str, (3) PBM (880 nm), (4) PBM (880 nm) + Str, (5) Str. All study groups had significantly higher osteogenic differentiation than the control group (p < 0.05), and no significant difference existed between the 660 and 808 nm groups (p = 0.97). Compared to the Str group, 660 nm and 880 nm group samples had significantly lower osteogenic differentiation (p < 0.0001), while other groups did not show a significant difference. Regarding cementogenic differentiation, the 660 nm group showed higher values than the 808 nm group (p < 0.01). Compared with the Str group, 660 nm, 660 nm + Str, and 808 nm + Str groups showed significantly higher gene expression (p < 0.05). In the case of osteogenic differentiation, although photobiomodulation alone had a lower inducing effect than strontium ranelate, combining 808 nm diode lasers and strontium ranelate may provide the best results. Moreover, using a 660 nm diode laser and exposing stem cells to strontium ranelate can be the most effective approach to induce cementogenic differentiation.
Collapse
Affiliation(s)
- S Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Fathi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Molaasadollah
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Teimoori
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - N Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - N Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Shekarchi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sayed O, Abdalla MM, Elsayed A, El-Mahallawy Y, Al-Mahalawy H. Does strontium coated titanium implants enhance the osseointegration in animal models under osteoporotic condition? A systematic review and meta-analysis. BDJ Open 2024; 10:69. [PMID: 39181895 PMCID: PMC11344846 DOI: 10.1038/s41405-024-00220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE The aim of this study was to systematically review the literature to address the effect of strontium modified titanium implants on the osseointegration in the presence of osteoporotic conditions through animal models. MATERIALS AND METHODS The databases (PubMed, Scopus, Web of Science, and EBSCO) were searched electronically, and manual searches were performed till December 2022 to identify preclinical studies on the osseointegration of strontium coated titanium implants in animals with induced osteoporotic conditions. The primary outcomes were the bone-implant contact percentage (BIC%), bone area (BA) from the histomorphometric analysis, and the osseointegration parameters from biomechanical tests; the secondary outcomes were the osseointegration parameters from the micro computed tomography. RESULTS Nineteen articles were included for the quantitative analysis on basis of the inclusion criteria. The results revealed that Sr-modified implants showed a significant 19.05% increase in BIC, and 15.01% increase in BA. The results of biomechanical tests indicated a significant effect in favor of Sr-coated implants. Furthermore, Results of the secondary outcomes supported the significant advantages of Sr-coated implants over the un-coated implants. The overall, systematic analysis of implants osteointegration parameters proved a significant increase in favor of Sr-coated titanium implants (P < 0.01). CONCLUSION The present results provide evidence that strontium-coated titanium implants enhanced the osseointegration in animal models under osteoporotic condition as this surface modification techniques have improved the mechanical and biological properties of the titanium implants.
Collapse
Affiliation(s)
- Osama Sayed
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine Al-Azhar University, Cairo, Egypt
| | - Ayman Elsayed
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Yehia El-Mahallawy
- Assistant Professor, Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Haytham Al-Mahalawy
- Professor and head of the Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
7
|
Miao A, Li Q, Tang G, Lu Q. Alginate-containing 3D-printed hydrogel scaffolds incorporated with strontium promotes vascularization and bone regeneration. Int J Biol Macromol 2024; 273:133038. [PMID: 38857724 DOI: 10.1016/j.ijbiomac.2024.133038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Bone defects persist as a significant challenge in the field of clinical orthopedics. This study focuses on the fabrication and characterization of 3D-printed composite hydrogel scaffolds composed of sodium alginate, gelatin, and α-tricalcium phosphate (α-TCP) with varying ratios of Strontium ions (Sr2+). These scaffolds aim to address the clinical challenges associated with bone defect repair by providing mechanical support and promoting bone formation and vascularization. The degradation, swelling, mechanical properties, and release profiles of Sr2+ from the hydrogel scaffolds were comprehensively characterized. In vitro tests were conducted to assess cell viability and proliferation, as well as osteogenic and angiogenic gene expression, to investigate the osteogenic and pro-angiogenic potential of the composite hydrogel scaffolds. Furthermore, skull defect simulations were performed, and composite scaffolds with varying Sr2+ ratios were implanted to evaluate their effectiveness in bone repair. This research establishes a foundation for advancing bone tissue engineering through composite scaffolds containing biological macromolecules and strontium, with alginate serving as a key element in enhancing performance and expanding clinical applicability.
Collapse
Affiliation(s)
- Afeng Miao
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Qingsong Li
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Genling Tang
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Qifeng Lu
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
8
|
Ru X, Yang L, Shen G, Wang K, Xu Z, Bian W, Zhu W, Guo Y. Microelement strontium and human health: comprehensive analysis of the role in inflammation and non-communicable diseases (NCDs). Front Chem 2024; 12:1367395. [PMID: 38606081 PMCID: PMC11007224 DOI: 10.3389/fchem.2024.1367395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Strontium (Sr), a trace element with a long history and a significant presence in the Earth's crust, plays a critical yet often overlooked role in various biological processes affecting human health. This comprehensive review explores the multifaceted implications of Sr, especially in the context of non-communicable diseases (NCDs) such as cardiovascular diseases, osteoporosis, hypertension, and diabetes mellitus. Sr is predominantly acquired through diet and water and has shown promise as a clinical marker for calcium absorption studies. It contributes to the mitigation of several NCDs by inhibiting oxidative stress, showcasing antioxidant properties, and suppressing inflammatory cytokines. The review delves deep into the mechanisms through which Sr interacts with human physiology, emphasizing its uptake, metabolism, and potential to prevent chronic conditions. Despite its apparent benefits in managing bone fractures, hypertension, and diabetes, current research on Sr's role in human health is not exhaustive. The review underscores the need for more comprehensive studies to solidify Sr's beneficial associations and address the gaps in understanding Sr intake and its optimal levels for human health.
Collapse
Affiliation(s)
- Xin Ru
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lida Yang
- College of Nursing, Mudanjiang Medical University, Mudanjiang, China
| | - Guohui Shen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kunzhen Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zihan Xu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenbo Bian
- Zibo Agricultural Science Research Institute, Shandong, China
- Digital Agriculture and Rural Research Institute of CAAS (Zibo), Shandong, China
| | - Wenqi Zhu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhi Guo
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
10
|
Park JE, Jang YS, Seo JM, Lee MH. Facilitated osteogenesis of magnesium implant by coating of strontium incorporated calcium phosphate. Biointerphases 2023; 18:2888968. [PMID: 37144874 DOI: 10.1116/6.0002598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
This study investigated the corrosion resistance and biocompatibility of magnesium coated with strontium-doped calcium phosphate (Sr-CaP) for dental and orthopedic applications. Sr-CaP was coated on biodegradable magnesium using a chemical dipping method. Magnesium coated with Sr-CaP exhibited better corrosion resistance than pure magnesium. Sr-CaP-coated magnesium showed excellent cell proliferation and differentiation. Additionally, new bone formation was confirmed in vivo. Therefore, Sr-CaP-coated magnesium with reduced degradation and improved biocompatibility can be used for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jae-Min Seo
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
- Department of Prosthodontics and Institute of Oral Bio-Science, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
11
|
Promotion of In Vitro Osteogenic Activity by Melt Extrusion-Based PLLA/PCL/PHBV Scaffolds Enriched with Nano-Hydroxyapatite and Strontium Substituted Nano-Hydroxyapatite. Polymers (Basel) 2023; 15:polym15041052. [PMID: 36850334 PMCID: PMC9964080 DOI: 10.3390/polym15041052] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Bone tissue engineering has emerged as a promising strategy to overcome the limitations of current treatments for bone-related disorders, but the trade-off between mechanical properties and bioactivity remains a concern for many polymeric materials. To address this need, novel polymeric blends of poly-L-lactic acid (PLLA), polycaprolactone (PCL) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) have been explored. Blend filaments comprising PLLA/PCL/PHBV at a ratio of 90/5/5 wt% have been prepared using twin-screw extrusion. The PLLA/PCL/PHBV blends were enriched with nano-hydroxyapatite (nano-HA) and strontium-substituted nano-HA (Sr-nano-HA) to produce composite filaments. Three-dimensional scaffolds were printed by fused deposition modelling from PLLA/PCL/PHBV blend and composite filaments and evaluated mechanically and biologically for their capacity to support bone formation in vitro. The composite scaffolds had a mean porosity of 40%, mean pores of 800 µm, and an average compressive modulus of 32 MPa. Polymer blend and enriched scaffolds supported cell attachment and proliferation. The alkaline phosphatase activity and calcium production were significantly higher in composite scaffolds compared to the blends. These findings demonstrate that thermoplastic polyesters (PLLA and PCL) can be combined with polymers produced via a bacterial route (PHBV) to produce polymer blends with excellent biocompatibility, providing additional options for polymer blend optimization. The enrichment of the blend with nano-HA and Sr-nano-HA powders enhanced the osteogenic potential in vitro.
Collapse
|
12
|
Octacalcium Phosphate for Bone Tissue Engineering: Synthesis, Modification, and In Vitro Biocompatibility Assessment. Int J Mol Sci 2021; 22:ijms222312747. [PMID: 34884557 PMCID: PMC8657881 DOI: 10.3390/ijms222312747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Octacalcium phosphate (OCP, Ca8H2(PO4)6·5H2O) is known to be a possible precursor of biological hydroxyapatite formation of organic bone tissue. OCP has higher biocompatibility and osseointegration rate compared to other calcium phosphates. In this work, the synthesis of low-temperature calcium phosphate compounds and substituted forms of those at physiological temperatures is shown. Strontium is used to improve bioactive properties of the material. Strontium was inserted into the OCP structure by ionic substitution in solutions. The processes of phase formation of low-temperature OCP with theoretical substitution of strontium for calcium up to 50 at.% in conditions close to physiological, i.e., temperature 35–37 °C and normal pressure, were described. The effect of strontium substitution range on changes in the crystal lattice of materials, the microstructural features, surface morphology and biological properties in vitro has been established. The results of the study indicate the effectiveness of using strontium in OCP for improving biocompatibility of OCP based composite materials intended for bone repair.
Collapse
|
13
|
Wu T, Liu W, Huang S, Chen J, He F, Wang H, Zheng X, Li Z, Zhang H, Zha Z, Lin Z, Chen Y. Bioactive strontium ions/ginsenoside Rg1-incorporated biodegradable silk fibroin-gelatin scaffold promoted challenging osteoporotic bone regeneration. Mater Today Bio 2021; 12:100141. [PMID: 34632364 PMCID: PMC8488313 DOI: 10.1016/j.mtbio.2021.100141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation.
Collapse
Affiliation(s)
- Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, Guangzhou, 510500, China.,Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wenping Liu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shusen Huang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jiwen Chen
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huajun Wang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhenyan Li
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Huantian Zhang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhengang Zha
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanfeng Chen
- Research Center of Medical Science, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
14
|
Zhao H, Wang X, Wang Z, Du F, Li H, Li C. Effects of an antler velvet-based natural compound on osteoporosis in a rodent model. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Velvet antlers (VA) are claimed to have the effects on osteoporosis in traditional Chinese medicine.
Aims
So as to scientifically confirm this claim, a VA-based compound (VAC, the mixture of upper part of VA, deer blood, and calcined oyster shell powder in a ratio of 4:1:1) was produced and administered to osteoporotic model rats, with osteoporosis being induced by retinoic acid via gavage.
Methods
In total, 48 rats were used and divided into six groups (8/group). Concentrations of alkaline phosphatase and osteocalcin in the rat serum were measured, and bone ash weight, concentrations of calcium and phosphorus in rat femur were measured. Bone biomechanical test was performed using a computer-controlled three-point bending tester. Ratio of trabecular bone area to tissue area in a given view field of the femoral tissue section was histologically examined and calculated. Bone histomorphometry was measured using micro-CT.
Key results
No significant difference was found between the VAC-treated groups and the positive control (alendronate sodium) on the basis of the following tested parameters: (1) levels of alkaline phosphatase and osteocalcin in rat serum; (2) maximum load value (N) of femur and maximum compression force of lumbar vertebra; (3) concentrations of calcium and phosphorus in femur; (4) ratio of trabecular bone area to tissue area; and (5) bone histomorphometry.
Conclusions
Effects of VAC used in the present study on osteoporosis in the model rats were comparable to the alendronate sodium (western medicine for treating osteoporosis) on the basis of our selected parameters.
Implications
This compound has the potential to be developed as an effective traditional Chinese medicine for clinic use to treat osteoporosis.
Collapse
|
15
|
Di Filippo MF, Amadori S, Casolari S, Bigi A, Dolci LS, Panzavolta S. Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems. Molecules 2019; 24:E1931. [PMID: 31109143 PMCID: PMC6572119 DOI: 10.3390/molecules24101931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/20/2022] Open
Abstract
3D cylindrical layered scaffolds with anisotropic mechanical properties were prepared according to a new and simple method, which involves gelatin foaming, deposition of foamed strips, in situ crosslinking, strip rolling and lyophilization. Different genipin concentrations were tested in order to obtain strips with different crosslinking degrees and a tunable stability in biological environment. Before lyophilization, the strips were curled in a concentric structure to generate anisotropic spiral-cylindrical scaffolds. The scaffolds displayed significantly higher values of stress at break and of the Young modulus in compression along the longitudinal than the transverse direction. Further improvement of the mechanical properties was achieved by adding strontium-substituted hydroxyapatite (Sr-HA) to the scaffold composition and by increasing genipin concentration. Moreover, composition modulated also water uptake ability and degradation behavior. The scaffolds showed a sustained strontium release, suggesting possible applications for the local treatment of abnormally high bone resorption. This study demonstrates that assembly of layers of different composition can be used as a tool to obtain scaffolds with modulated properties, which can be loaded with drugs or biologically active molecules providing properties tailored upon the needs.
Collapse
Affiliation(s)
| | - Sofia Amadori
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Sonia Casolari
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luisa Stella Dolci
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Silvia Panzavolta
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
16
|
Elisha R. The curious case of Patient K. Med J Aust 2018; 209:501-502. [PMID: 30521445 DOI: 10.5694/mja18.00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
|
17
|
Panzavolta S, Torricelli P, Casolari S, Parrilli A, Fini M, Bigi A. Strontium-Substituted Hydroxyapatite-Gelatin Biomimetic Scaffolds Modulate Bone Cell Response. Macromol Biosci 2018; 18:e1800096. [PMID: 29877029 DOI: 10.1002/mabi.201800096] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/07/2018] [Indexed: 11/10/2022]
Abstract
Strontium has a beneficial role on bone remodeling and is proposed for the treatment of pathologies associated to excessive bone resorption, such as osteoporosis. Herein, the possibility to utilize a biomimetic scaffold as strontium delivery system is explored. Porous 3D gelatin scaffolds containing about 30% of strontium substituted hydroxyapatite (SrHA) or pure hydroxyapatite (HA) are prepared by freeze-drying. The scaffolds display a very high open porosity, with an interconnectivity of 100%. Reinforcement with further amount of gelatin provokes a modest decrease of the average pore size, without reducing interconnectivity. Moreover, reinforced scaffolds display reduced water uptake ability and increased values of mechanical parameters when compared to as-prepared scaffolds. Strontium displays a sustained release in phosphate buffered saline: the quantities released after 14 d from as-prepared and reinforced scaffolds are just 14 and 18% of the initial content, respectively. Coculture of osteoblasts and osteoclasts shows that SrHA-containing scaffolds promote osteoblast viability and activity when compared to HA-containing scaffolds. On the other hand, osteoclastogenesis and osteoclast differentiation are significantly inhibited on SrHA-containing scaffolds, suggesting that these systems could be usefully applied for local delivery of strontium in loci characterized by excessive bone resorption.
Collapse
Affiliation(s)
- Silvia Panzavolta
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi, 2, Bologna, 40126, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Sonia Casolari
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi, 2, Bologna, 40126, Italy
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi, 2, Bologna, 40126, Italy
| |
Collapse
|
18
|
Effect of titanium implants with strontium incorporation on bone apposition in animal models: A systematic review and meta-analysis. Sci Rep 2017; 7:15563. [PMID: 29138499 PMCID: PMC5686172 DOI: 10.1038/s41598-017-15488-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
This systematic review aims to assess the efficacy of titanium (Ti) implant surfaces with or without strontium (Sr) incorporation on osseointegration in animal experimental studies. An electronic search was conducted using databases of PubMed and EMBASE up to November 2016 to identify studies focusing on osseointegration of strontium-modified titanium implants following PRISMA criteria. The primary outcome was the percentage of bone-to-implant contact (BIC) around the implants with or without strontium-modified surface. Of the 1320 studies, 17 studies fulfilling the inclusion criteria were finally included. A random effect meta-analysis was conducted based on BIC in 17 studies, and the results demonstrated considerable heterogeneity (I² = 79%). A sensitivity analysis found that three studies using the same surface modification method were the major source of the heterogeneity. Therefore, exploratory subgroup analysis was performed. Subgroup one including 14 studies showed a standard mean differences (SMD) of 1.42 (95% CI, 1.13-1.71) with no heterogeneity (I² = 0.0%), while subgroup two including the other three studies showed a SMD of 9.49.95% CI, 7.51-11.47) with low heterogeneity (I² = 0.1%). Sr-modified implants in both subgroups showed significantly higher BIC than unmodified implants (P < 0.01). The results showed a statistically significant effect of Sr-modified titanium implant surfaces on osseointegration and bone apposition in animal models.
Collapse
|
19
|
Saul D, Gleitz S, Nguyen HH, Kosinsky RL, Sehmisch S, Hoffmann DB, Wassmann M, Menger B, Komrakova M. Effect of the lipoxygenase-inhibitors baicalein and zileuton on the vertebra in ovariectomized rats. Bone 2017; 101:134-144. [PMID: 28455215 DOI: 10.1016/j.bone.2017.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022]
Abstract
Osteoporosis is one of the most common diseases worldwide. In osteoporosis, vertebral fractures represent a major burden. Lipoxygenase (LOX) inhibitors such as baicalein and zileuton may represent a promising therapeutic option owing to their antioxidative effects and suppression of various inflammatory processes in muscle and bone. The effect of these LOX inhibitors on the spine was studied in osteopenic rats. Female Sprague-Dawley rats were divided two times into five groups: four groups each were ovariectomized (OVX) and one control group was non-ovariectomized (NON-OVX). Eight weeks after ovariectomy, three concentrations of baicalein (1mg/kg body weight [BW], 10mg/kgBW, and 100mg/kgBW) were administered subcutaneously daily in three OVX groups for 4weeks. Similarly, zileuton was administered in three concentrations via food for 5weeks. In vivo computed tomography (pQCT) of the spine was performed before the treatments and at the end of the experiment. Lumbar vertebrae were subjected to a compression test, micro-CT, and ashing analyses. After baicalein treatment, cortical bone mineral density (BMD) was improved; trabecular connectivity and trabecular BMD were diminished at high dose. After zileuton treatment, the total BMD, anorganic weight, trabecular nodes, and trabecular area were improved. The in vivo stress-strain index was increased and alkaline phosphatase activity in serum was enhanced after both treatments. A dose-dependent effect was not clearly observed after both treatments. The treatments using baicalein for 4 and zileuton for 5weeks were not sufficient to change the biomechanical properties and bone volume fraction (BV/TV). Overall, baicalein improved the cortical bone parameters whereas zileuton had a favorable effect on the trabecular structure. Moreover, both treatments increased the bone formation rate. Longer trials, a combination of both LOX inhibitors, and their effect at the cellular and molecular levels should be investigated in further studies.
Collapse
Affiliation(s)
- D Saul
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.
| | - S Gleitz
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - H H Nguyen
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - R L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - S Sehmisch
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - D B Hoffmann
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - M Wassmann
- Medical Institute of General Hygiene and Environmental Health, University of Goettingen, 37075 Goettingen, Germany
| | - B Menger
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - M Komrakova
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Komrakova M, Hoffmann DB, Nuehnen V, Stueber H, Wassmann M, Wicke M, Tezval M, Stuermer KM, Sehmisch S. The Effect of Vibration Treatments Combined with Teriparatide or Strontium Ranelate on Bone Healing and Muscle in Ovariectomized Rats. Calcif Tissue Int 2016; 99:408-22. [PMID: 27272029 DOI: 10.1007/s00223-016-0156-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
Abstract
The aim of the present study was to study the effect of combined therapy of teriparatide (PTH) or strontium ranelate (SR) with whole-body vibration (WBV) on bone healing and muscle properties in an osteopenic rat model. Seventy-two rats (3 months old) were bilaterally ovariectomized (Ovx), and 12 rats were left intact (Non-Ovx). After 8 weeks, bilateral transverse osteotomy was performed at the tibia metaphysis in all rats. Thereafter, Ovx rats were divided into six groups (n = 12): (1) Ovx-no treatment, (2) Ovx + vibration (Vib), (3) SR, (4) SR + Vib, (5) PTH, and (6) PTH + Vib. PTH (40 μg/kg BW sc. 5×/week) and SR (613 mg/kg BW in food daily) were applied on the day of ovariectomy, vibration treatments 5 days later (vertical, 70 Hz, 0.5 mm, 2×/day for 15 min) for up to 6 weeks. In the WBV + SR group, the callus density, trabecular number, and Alp and Oc gene expression were decreased compared to SR alone. In the WBV + PTH group, the cortical and callus widths, biomechanical properties, Opg gene expression, and Opg/Rankl ratio were increased; the cortical and callus densities were decreased compared to PTH alone. A case of non-bridging was found in both vibrated groups. Vibration alone did not change the bone parameters; PTH possessed a stronger effect than SR therapy. In muscles, combined therapies improved the fiber size of Ovx rats. WBV could be applied alone or in combination with anti-osteoporosis drug therapy to improve muscle tissue. However, in patients with fractures, anti-osteoporosis treatments and the application of vibration could have an adverse effect on bone healing.
Collapse
Affiliation(s)
- M Komrakova
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany.
| | - D B Hoffmann
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - V Nuehnen
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - H Stueber
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - M Wassmann
- Department of Medical Microbiology, Subdivision of General Hygiene and Environmental Health, University of Goettingen, Humboldallee 34a, 37073, Göttingen, Germany
| | - M Wicke
- Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - M Tezval
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - K M Stuermer
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
21
|
Fan YP, Chen XY, Chen Y, Yang GL, Wang HM, He FM. Positive effect of strontium-oxide layer on the osseointegration of moderately rough titanium surface in non-osteoporotic rabbits. Clin Oral Implants Res 2016; 28:911-919. [PMID: 27283240 DOI: 10.1111/clr.12897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the effect of strontium-oxide layer on new bone formation and osseointegration of sandblasted large-grit double-acid-etched (SLA) implant. MATERIAL AND METHODS Strontium-oxide layer on the SLA surface was produced by hydrothermal treatment using a Sr-containing solution. The surface topographies, roughness, hardness values, chemical elements and ionic release of SLA and the strontium-containing SLA (Sr-SLA) surface were measured by special instruments separately. Sixty-four SLA and Sr-SLA implants were inserted into the proximal tibiae and femoral condyles of sixteen non-osteoporotic New Zealand white rabbits. The biological effects were evaluated by removal torque (RTQ) testing and histomorphometric analysis after 3 and 6 weeks of implantation. RESULTS The surface characteristics showed Sr-SLA surfaces with dotted nanostructures can release appropriate amount of strontium ions into surrounding tissue till 14 days. In vivo, the Sr-SLA implants presented significantly higher RTQ than SLA implants at 3 and 6 weeks (P < 0.05). The Sr-SLA implants presented higher bone-to-implant contact (BIC) than SLA implants in cortical bone at 3 and 6 weeks (P < 0.05). The bone area was slightly higher for the Sr-SLA implants at 3 and 6 weeks (P > 0.05). CONCLUSIONS The strontium-oxide layer on the SLA surface has the potential to improve implant osseointegration in non-osteoporotic rabbits.
Collapse
Affiliation(s)
- Yan-Pin Fan
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yi Chen
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yun Chen
- Department of oral Implantology, Xiamen Stomatology Hospital, Xiamen, China
| | - Guo-Li Yang
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Ming Wang
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fu-Ming He
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Shi H, He F, Ye J. Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: effects of ionic charge and radius. J Mater Chem B 2016; 4:1712-1719. [PMID: 32263022 DOI: 10.1039/c5tb02247a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe3+) and strontium ions (Sr2+) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe3+ and Sr2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe3+-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Collapse
Affiliation(s)
- Haishan Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | |
Collapse
|
23
|
Liu C, Zhang Y, Wang L, Zhang X, Chen Q, Wu B. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro. PLoS One 2015; 10:e0140669. [PMID: 26529234 PMCID: PMC4631518 DOI: 10.1371/journal.pone.0140669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. MATERIALS AND METHODS Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. RESULTS The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. CONCLUSIONS These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.
Collapse
Affiliation(s)
- Chundong Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- College of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Yanli Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- College of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Lichao Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- College of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Xinhua Zhang
- Department of Stomatology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Qiuyue Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- College of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- College of Stomatology, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
24
|
Komrakova M, Weidemann A, Dullin C, Ebert J, Tezval M, Stuermer KM, Sehmisch S. The Impact of Strontium Ranelate on Metaphyseal Bone Healing in Ovariectomized Rats. Calcif Tissue Int 2015; 97:391-401. [PMID: 26084691 DOI: 10.1007/s00223-015-0019-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/01/2015] [Indexed: 11/24/2022]
Abstract
The following questions were addressed: whether therapy with strontium ranelate (SR) should be continued or interrupted if the fractures occur during SR treatment and whether SR could be applied directly after fracture to improve bone healing. Sprague-Dawley rats (3 month old) were ovariectomized (Ovx, n = 48) or left intact (n = 12). After 8 weeks, a bilateral transverse osteotomy of the tibia metaphysis was created in all rats. Ovx rats were divided into four groups: Ovx; SR applied directly after Ovx until osteotomy (prophylaxis, SR pr, 8 weeks); SR applied after osteotomy (therapy, SR th, 5 weeks); SR applied during the whole experiment (pr + th, 13 weeks). SR dosage was 625 mg/kg body weight/day, administered in the feed. Five weeks later, tibiae were analyzed by biomechanical, histological, micro-CT, and gene expression analyses. The SR pr + th treatment increased total bone mineral density (BMD), bone volume fraction, cortical BMD and volume, callus area and density, serum alkaline phosphatase, tartrate-resistant acid phosphatase mRNA, accelerated osteotomy bridging, and callus formation at weeks 2 and 3 of healing and decreased the osteoprotegerin/receptor activator of nuclear factor kB ligand mRNA ratio. SR th enlarged callus area and improved callus formation during the 5th week of healing. SR pr improved cortical BMD preserving bone after SR discontinuation (5-week rest); the bone healing was not affected. SR content in the tibia metaphysis was the highest in SR pr + th group and was not different between SR pr and SR th. SR has a positive effect on osteoporotic bone healing in rat and SR treatment can be continued after the fracture occurs or applied directly after the fracture.
Collapse
Affiliation(s)
- Marina Komrakova
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Robert-Koch St. 40, 37075, Göttingen, Germany.
| | - Anna Weidemann
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Robert-Koch St. 40, 37075, Göttingen, Germany
| | - Christian Dullin
- Department of Radiology, University of Göttingen, Robert-Koch 40, 37075, Göttingen, Germany
| | - Joachim Ebert
- Department of Medical Microbiology, Subdivision of General Hygiene and Environmental Health, University of Göttingen, Humboldallee 34a, 37073, Göttingen, Germany
| | - Mohammad Tezval
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Robert-Koch St. 40, 37075, Göttingen, Germany
| | - Klaus Michael Stuermer
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Robert-Koch St. 40, 37075, Göttingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Robert-Koch St. 40, 37075, Göttingen, Germany
| |
Collapse
|
25
|
Lu YC, Chang TK, Yeh ST, Fang HW, Lin CY, Hsu LI, Huang CH, Huang CH. The potential role of strontium ranelate in treating particle-induced osteolysis. Acta Biomater 2015; 20:147-154. [PMID: 25841346 DOI: 10.1016/j.actbio.2015.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Ultra high molecular weight polyethylene (UHMWPE) wear-particle-induced osteolysis is one of the major issues affecting the long-term survival of total joint prostheses. Currently, there are no effective therapeutic options to prevent osteolysis from occurring. The aim of this study was to evaluate the role of strontium ranelate (SR) in reducing the risk of particle-induced osteolysis. Forty-eight C57BL/6J ultra-high molecular weight polyethylene (UHMWPE) particle-induced murine calvarial osteolysis models were used. The mice were randomized into four groups as: sham (Group 1), UHMWPE particles (Group 2), and SR with UHMWPE particles (Group 3 and Group 4). Groups 1 to 3 were sacrificed at two weeks and group 4 was sacrificed at the fourth week. The skulls were then analyzed with a high-resolution micro-CT. Histological evaluation was then conducted and osteoclast numbers were analyzed for comparison. Based on the micro-CT, percentage bone volume and trabecular thickness were found to be significantly higher in Group 4 than in Group 2 (p<0.001). Osteoclast numbers in SR treated groups (Group 3 and Group 4) were reduced when compared to groups that did not receive SR treatment (Group 2). These results indicated that SR treatment helps to increase bone volume percentage and trabecular thickness and also suppresses osteoclast proliferation. It is suggested that oral SR treatment could serve as an alternative therapy for preventing particle-induced osteolysis.
Collapse
|
26
|
Pelletier JP, Roubille C, Raynauld JP, Abram F, Dorais M, Delorme P, Martel-Pelletier J. Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: reduction in bone marrow lesions protects against cartilage loss. Ann Rheum Dis 2015; 74:422-9. [PMID: 24297379 DOI: 10.1136/annrheumdis-2013-203989] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore, using MRI, the disease-modifying effect of strontium ranelate (SrRan) treatment on cartilage volume loss (CVL) and bone marrow lesions (BMLs) in a subset of patients from a Phase III clinical trial in knee osteoarthritis (OA) (SrRan Efficacy in Knee OsteoarthrItis triAl (SEKOIA)). MATERIAL AND METHODS Patients with primary symptomatic knee OA were randomised to receive either SrRan 1 g/day or 2 g/day or placebo (SEKOIA study). A subset of these patients had MRIs at baseline, 12, 24 and 36 months to assess the knee cartilage volume and BMLs. Missing values were imputed and the analyses were adjusted according to Bonferroni. RESULTS In this MRI subset, the distribution of patients (modified intention-to-treat; n=330) was 113, 105 and 112 for SrRan 1 g/day, 2 g/day and placebo, respectively. The groups were fairly balanced at baseline regarding demographics, clinical symptoms or imaging characteristics. Treatment with SrRan 2 g/day significantly decreased CVL on the plateaus at 12 (p=0.002) and 36 (p=0.003) months compared with placebo. Of note, in the medial femur and plateau, SrRan 1 g/day, but not SrRan 2 g/day, had more CVL than placebo. In patients with BML in the medial compartment at baseline, the BML score at 36 months was decreased in both treatment groups compared with the placebo group (SrRan 1 g/day, p=0.002 and SrRan 2 g/day p=0.001, respectively), and CVL significantly decreased with SrRan 2 g/day (p=0.023) in the plateau compared with placebo. CONCLUSIONS In knee OA patients, treatment with SrRan 2 g/day was found to have beneficial effects on structural changes by significantly reducing CVL in the plateau and BML progression in the medial compartment.
Collapse
Affiliation(s)
- Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Camille Roubille
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Raynauld
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - François Abram
- Imaging Research & Development, ArthroLab Inc., Montreal, Quebec, Canada
| | - Marc Dorais
- StatSciences Inc., Notre-Dame de l'Île-Perrot, Quebec, Canada
| | - Philippe Delorme
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
27
|
The concentration of strontium and other minerals in animal feed ingredients. JOURNAL OF APPLIED ANIMAL NUTRITION 2014. [DOI: 10.1017/jan.2013.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryVariance in macro- and micro-mineral concentration in feed ingredients for farmed livestock contributes to sub-optimal performance and may compromise health and welfare. Although routine quality assurance and quality control procedures in feed mills or integrated poultry or swine businesses may track variance in the concentration of minerals of immediate nutritional importance, such as phosphorus (P), calcium (Ca) and sodium (Na), micro-minerals such as strontium (Sr) attract less attention. In order to create a framework for further study, the mineral concentration in more than 130 animal feed ingredients commonly used in Australia were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Due to a dearth of information, the principal focus of the survey was Sr, but the concentration of Ca, P, magnesium (Mg), manganese (Mn), potassium (K), iron (Fe), copper (Cu), zinc (Zn), sulphur (S) and Na were analysed concurrently. Generally the minerals present at the highest concentrations in the various feed ingredients examined were Ca, P and Mg. As anticipated, the ingredients with the highest concentrations of Ca and P were inorganic phosphates, limestone and meat and bone meal. The average Ca concentration in limestone was 393 g/kg but a range of 376–415 g/kg was observed which may be nutritionally important. Furthermore, the Mg concentration in limestone ranged from 7–535 mg/kg suggesting some contamination by dolomite lime sources. A total of 24 meat and bone meal samples were included in the analysis and mean Ca and P concentrations were 109 and 54 g/kg respectively. However, the range of Ca and P in meat and bone meal was considerable with Ca concentrations from 51–148 g/kg and P concentrations from 26–66 g/kg. A total of 81 cereal, grain legume and cereal by-product samples were included as part of the survey and these vegetable feed ingredients contained relatively low concentrations of most minerals with Ca, P, Mg and K dominating. The K concentration of soybean meal was found to be around 23 g/kg and ranged from approximately 22–27 g/kg. In comparison, the Sr concentration in the feed ingredients was low relative to other minerals, with limestone having the highest level of strontium at 329 mg/kg. Overall those feed ingredients from a mineral origin had the highest level of Sr. In addition, meat and bone meal had a relatively high concentration of Sr (around 159 mg/kg).
Collapse
|
28
|
Cesini J, Cheriet S, Breuil V, Lafage-Proust MH. Osteoporosis: chronic kidney disease in rheumatology practice. Joint Bone Spine 2013; 79 Suppl 2:S104-9. [PMID: 23098842 DOI: 10.1016/s1297-319x(12)70017-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Johann Cesini
- Service de Rhumatologie, CHU Caen, Avenue de la Côte-de-Nacre, 14033 Caen, France
| | | | | | | |
Collapse
|
29
|
Reginster JY, Badurski J, Bellamy N, Bensen W, Chapurlat R, Chevalier X, Christiansen C, Genant H, Navarro F, Nasonov E, Sambrook PN, Spector TD, Cooper C. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis 2013; 72:179-86. [PMID: 23117245 PMCID: PMC3599139 DOI: 10.1136/annrheumdis-2012-202231] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 11/14/2022]
Abstract
BACKGROUND Strontium ranelate is currently used for osteoporosis. The international, double-blind, randomised, placebo-controlled Strontium ranelate Efficacy in Knee OsteoarthrItis triAl evaluated its effect on radiological progression of knee osteoarthritis. METHODS Patients with knee osteoarthritis (Kellgren and Lawrence grade 2 or 3, and joint space width (JSW) 2.5-5 mm) were randomly allocated to strontium ranelate 1 g/day (n=558), 2 g/day (n=566) or placebo (n=559). The primary endpoint was radiographical change in JSW (medial tibiofemoral compartment) over 3 years versus placebo. Secondary endpoints included radiological progression, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and knee pain. The trial is registered (ISRCTN41323372). RESULTS The intention-to-treat population included 1371 patients. Treatment with strontium ranelate was associated with smaller degradations in JSW than placebo (1 g/day: -0.23 (SD 0.56) mm; 2 g/day: -0.27 (SD 0.63) mm; placebo: -0.37 (SD 0.59) mm); treatment-placebo differences were 0.14 (SE 0.04), 95% CI 0.05 to 0.23, p<0.001 for 1 g/day and 0.10 (SE 0.04), 95% CI 0.02 to 0.19, p=0.018 for 2 g/day. Fewer radiological progressors were observed with strontium ranelate (p<0.001 and p=0.012 for 1 and 2 g/day). There were greater reductions in total WOMAC score (p=0.045), pain subscore (p=0.028), physical function subscore (p=0.099) and knee pain (p=0.065) with strontium ranelate 2 g/day. Strontium ranelate was well tolerated. CONCLUSIONS Treatment with strontium ranelate 1 and 2 g/day is associated with a significant effect on structure in patients with knee osteoarthritis, and a beneficial effect on symptoms for strontium ranelate 2 g/day.
Collapse
Affiliation(s)
- Jean-Yves Reginster
- Correspondence to Professor Jean-Yves Reginster, Department of Public Health and Health Economics, University of Liege, 4020 Liege, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wohl GR, Chettle DR, Pejović-Milić A, Druchok C, Webber CE, Adachi JD, Beattie KA. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate. Bone 2013; 52:63-9. [PMID: 22995463 DOI: 10.1016/j.bone.2012.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/18/2012] [Accepted: 09/05/2012] [Indexed: 12/14/2022]
Abstract
Strontium ranelate is an approved pharmacotherapy for osteoporosis in Europe and Australia, but not in Canada or the United States. Strontium citrate, an alternative strontium salt, however, is available for purchase over-the-counter as a nutritional supplement. The effects of strontium citrate on bone are largely unknown. The study's objectives were 1) to quantify bone strontium accumulation in female Sprague Dawley rats administered strontium citrate (N=7) and compare these levels to rats administered strontium ranelate (N=6) and vehicle (N=6) over 8 weeks, and 2) to verify an in vivo X-ray fluorescence spectroscopy (XRF) system for measurement of bone strontium in the rat. Daily doses of strontium citrate and strontium ranelate were determined with the intention to achieve equivalent amounts of elemental strontium. However, post-hoc analyses of each strontium compound conducted using energy dispersive spectrometry microanalysis revealed a higher elemental strontium concentration in strontium citrate than strontium ranelate. Bone strontium levels were measured at baseline and 8 weeks follow-up using a unique in vivo XRF technique previously used in humans. XRF measurements were validated against ex vivo measurements of bone strontium using inductively coupled plasma mass spectrometry. Weight gain in rats in all three groups was equivalent over the study duration. A two-way ANOVA was conducted to compare bone strontium levels amongst the three groups. Bone strontium levels in rats administered strontium citrate were significantly greater (p<0.05) than rats administered strontium ranelate and vehicle. ANCOVA analyses were performed with Sr dose as a covariate to account for differences in strontium dosing. The ANCOVA revealed differences in bone strontium levels between the strontium groups were not significant, but that bone strontium levels were still very significantly greater than vehicle.
Collapse
Affiliation(s)
- Gregory R Wohl
- Department of Mechanical Engineering, McMaster School of Biomedical Engineering, McMaster University, 1280 Main Street West, Office: ETB 411, Hamilton, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Park JW, Kim YJ, Jang JH, Song H. Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. J Biomed Mater Res A 2012; 101:298-306. [DOI: 10.1002/jbm.a.34433] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/21/2023]
|
32
|
Cavalli L, Brandi ML. Targeted approaches in the treatment of osteoporosis: differential mechanism of action of denosumab and clinical utility. Ther Clin Risk Manag 2012; 8:253-66. [PMID: 22745560 PMCID: PMC3383338 DOI: 10.2147/tcrm.s7688] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Denosumab is a breakthrough biological drug approved by the Food and Drug Administration and European Medicines Agency for the treatment of osteoporosis in 2010. It is a fully human monoclonal antireceptor activator of nuclear factor kappa-B ligand antibody, which inhibits the activity of osteoclasts, resulting in an antiresorptive effect with a significant increase in bone mineral density. The FREEDOM (Fracture Reduction Evaluation of Denosumab in Osteoporosis every 6 Months) trial, comparing denosumab with no treatment in 7868 women with postmenopausal osteoporosis, showed an important reduction of fracture risk at hip, vertebral, and nonvertebral sites in the treated group, while no statistically significant difference in the incidence of adverse events was detected between denosumab and placebo groups. The specific action of denosumab directed against a key regulator of osteoclasts makes it a valuable tool in preventing the occurrence of skeletal events caused by bone destruction in patients with advanced malignancies. The drug was approved for postmenopausal osteoporosis in women at increased risk of fracture and for the treatment of bone loss associated with androgen deprivation therapy in men with prostate cancer.
Collapse
Affiliation(s)
- Loredana Cavalli
- Unit of Mineral and Bone Metabolism Diseases, Department of Internal Medicine, Traumatologic Orthopedic Center, Florence, Italy
| | - Maria Luisa Brandi
- Unit of Mineral and Bone Metabolism Diseases, Department of Internal Medicine, Traumatologic Orthopedic Center, Florence, Italy
| |
Collapse
|
33
|
Price CT, Langford JR, Liporace FA. Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet. Open Orthop J 2012; 6:143-9. [PMID: 22523525 PMCID: PMC3330619 DOI: 10.2174/1874325001206010143] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis and low bone mineral density affect millions of Americans. The majority of adults in North America have insufficient intake of vitamin D and calcium along with inadequate exercise. Physicians are aware that vitamin D, calcium and exercise are essential for maintenance of bone health. Physicians are less likely to be aware that dietary insufficiencies of magnesium, silicon, Vitamin K, and boron are also widely prevalent, and each of these essential nutrients is an important contributor to bone health. In addition, specific nutritional factors may improve calcium metabolism and bone formation. It is the authors' opinion that nutritional supplements should attempt to provide ample, but not excessive, amounts of factors that are frequently insufficient in the typical American diet.In contrast to dietary insufficiencies, several nutrients that support bone health are readily available in the average American diet. These include zinc, manganese, and copper which may have adverse effects at higher levels of intake. Some multivitamins and bone support products provide additional quantities of nutrients that may be unnecessary or potentially harmful.The purpose of this paper is to identify specific nutritional components of bone health, the effects on bone, the level of availability in the average American diet, and the implications of supplementation for each nutritional component. A summary of recommended dietary supplementation is included.
Collapse
Affiliation(s)
- Charles T Price
- Orlando Health, 1222 Orange Avenue, 5 Floor, Orlando, Florida 32806, USA
| | | | | |
Collapse
|
34
|
Duggan ST, McKeage K. Bazedoxifene: a review of its use in the treatment of postmenopausal osteoporosis. Drugs 2012; 71:2193-212. [PMID: 22035517 DOI: 10.2165/11207420-000000000-00000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bazedoxifene (Conbriza®, Viviant®) is the first third-generation selective estrogen receptor modulator (SERM) and it is approved for the treatment of postmenopausal osteoporosis in the EU and Japan. Bazedoxifene contains an indole-based core binding domain that binds with high affinity to estrogen receptors and exhibits favourable effects on bone and lipid profiles, with no clinically relevant endometrial or breast stimulation. Oral bazedoxifene once daily reduced the incidence of new vertebral fractures in patients with postmenopausal osteoporosis in a large, well designed trial of 3 years' duration; both bazedoxifene and raloxifene were significantly more effective than placebo. Neither bazedoxifene nor raloxifene reduced the incidence of nonvertebral fractures in the overall study population; however, bazedoxifene, but not raloxifene, reduced the rate of nonvertebral fractures in high-risk patients. Moreover, data from patients who continued to receive the drug during a 2-year extension phase of this trial indicate that bazedoxifene continues to provide protection against new vertebral fractures for up to 5 years. Bazedoxifene also increases bone mineral density and reduces the levels of bone turnover markers. Bazedoxifene was generally well tolerated and did not detrimentally affect the reproductive tract or breast tissue in clinical trials, thereby demonstrating a favourable risk-benefit profile. A pharmacoeconomic analysis conducted from an EU perspective predicted bazedoxifene to be cost effective in some EU countries. Therefore, bazedoxifene presents another useful option for the treatment of postmenopausal osteoporosis, especially in those at high risk for osteoporotic fracture.
Collapse
Affiliation(s)
- Sean T Duggan
- Adis, a Wolters Kluwer Business, Auckland, New Zealand
| | | |
Collapse
|
35
|
Boanini E, Torricelli P, Fini M, Bigi A. Osteopenic bone cell response to strontium-substituted hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2079-2088. [PMID: 21691830 DOI: 10.1007/s10856-011-4379-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/09/2011] [Indexed: 05/30/2023]
Abstract
Ionic substitution is a powerful tool to improve the biological performance of calcium phosphate based materials. In this work, we investigated the response of primary cultures of rat osteoblasts derived from osteopenic (O-OB) bone to strontium substituted hydroxyapatite (SrHA), and to hydroxyapatite (HA) as reference material, compared to normal (N-OB) bone cells. Strontium (Sr) and calcium (Ca) cumulative releases in physiological solution are in agreement with the greater solubility of SrHA than HA, whereas the differences between the two materials are levelled off in DMEM, which significantly reduced ion release. O-OB cells grown on SrHA exhibited higher proliferation and increased values of the differentiation parameters. In particular, Sr substitution increased the levels of proliferation, alkaline phosphatase, and collagen type I, and down-regulated the production of interleukin-6 of O-OB cells, demonstrating a promising future of SrHA in the treatment of bone lesions and defects in the presence of osteoporotic bone.
Collapse
Affiliation(s)
- E Boanini
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
36
|
Landfeldt E, Lang A, Robbins S, Ström O. Gastrointestinal tolerability and patterns of switching in patients treated for primary osteoporosis: the Swedish Adherence Register Analysis (SARA). Calcif Tissue Int 2011; 89:234-45. [PMID: 21695544 DOI: 10.1007/s00223-011-9511-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/02/2011] [Indexed: 11/25/2022]
Abstract
The objective of this study was to describe and analyze the gastrointestinal tolerability and medication switching in patients receiving treatment for primary osteoporosis in Sweden. The study was based on all patients starting therapy with alendronate, risedronate, strontium ranelate, and raloxifene in Sweden between 2005 and 2009. The primary outcome measure was start of treatment with a gastroprotective agent, and the secondary outcome was hospitalization for a gastrointestinal adverse event (GIAE). Switching was analyzed while patients were on treatment. The crude incidence of gastroprotective treatment during the first 6 months after initiation of osteoporosis therapy was 5.14%, 5.93%, 4.25%, and 2.86% for patients prescribed alendronate, risedronate, strontium ranelate, and raloxifene, respectively. Patients prescribed raloxifene had a significantly lower risk of filling a prescription for a gastroprotective agent compared with alendronate. There was no significant difference in the risk of hospitalization for GIAEs. Less than 3% switched therapy while on treatment. Patients prescribed risedronate, strontium ranelate, and raloxifene had a significantly higher risk of switching compared with patients taking alendronate. In conclusion, no significant difference in the incidence of GIAEs was found between patients prescribed alendronate, risedronate, and strontium ranelate. Individuals prescribed raloxifene had a significantly lower risk of GIAEs compared with patients prescribed alendronate. No significant difference was found in the frequency of hospitalization for GIAEs. Switching between osteoporosis medications and drug classes was uncommon. Prescribers should consider the real-world gastrointestinal safety of osteoporosis drugs when choosing between treatment options to potentially improve medication adherence and consequently effectiveness.
Collapse
|
37
|
|
38
|
Rousière M. [The importance of taking care of osteoporosis]. Presse Med 2011; 40:900-9. [PMID: 21493035 DOI: 10.1016/j.lpm.2011.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/24/2022] Open
Abstract
Consequences in terms of mortality and morbidity of osteoporotic fractures are serious and recent data show that mortality of osteoporosis is often a witness of poor health. Prevalent fracture is one of the most important risk factors for incident fracture. The risk of subsequent fractures is highest immediately after initial fractures. It is essential to treat postmenopausal osteoporotic women who had experienced a fragility fracture. Efforts to raise awareness of osteoporosis among the general public and medical profession are essential because only a minority of women is taken care and treated after a typical osteoporotic fracture. We have effective treatments, varied and adapted to all situations encountered in clinical practice for the management of osteoporosis. All available treatments showed an effect on vertebral fractures and some demonstrated an effect on nonvertebral fractures or hip fractures. The lack of adherence is perfectly demonstrated in osteoporosis. As for all patients affected by a chronic disease, patient education should become part of the global care of patients with osteoporosis.
Collapse
Affiliation(s)
- Mickaël Rousière
- Service de rhumatologie, hôpital Saint-Antoine, AP-HP, 75012 Paris, France.
| |
Collapse
|
39
|
Abstract
Osteoporosis is a systemic bone disease characterized by low bone mass and bone mineral density, and deterioration of the underlying structure of bone tissue. These changes lead to an increase in bone fragility and an increased risk for fracture, which are the clinical consequences of osteoporosis. The classical triad for consideration in osteoporosis is morbidity, mortality and cost. Vertebral fracture is an important source of morbidity in terms of pain and spinal deformity. On the other hand, hip fracture is associated with the worst outcomes and is widely regarded as a life-threatening event in the elderly; it is the source of the bulk of the cost of the disease in contemporary healthcare. The prevention of osteoporosis-associated fracture should include fall prevention, calcium supplementation and lifestyle advice, as well as pharmacological therapy using agents with proven antifracture efficacy. The most commonly used osteoporosis treatments in Europe are the bisphosphonates alendronate, risedronate, ibandronate and zoledronic acid; the selective estrogen receptor modulator (SERM) raloxifene; teriparatide; and strontium ranelate. Recent additions include the biological therapy denosumab and the SERM bazedoxifene. In this review, we explore the antifracture efficacy of these agents with the aim of simplifying treatment decisions. These treatments can be broadly divided according to their mode of action. The antiresorptive agents include the bisphosphonates, the SERMs and denosumab, while the bone-forming agents include parathyroid hormone and teriparatide. Strontium ranelate appears to combine both antiresorptive and anabolic activities. We collated data on vertebral and hip fracture efficacy from the pivotal 3-year phase III trials, all of which had a randomized, double-blind, placebo-controlled design. The relative reductions in risk in the osteoporosis trials range from 30% to 70% for vertebral fracture and 30% to 51% for hip fracture. This translates into 3-year number needed to treat values of between 9 and 21 for vertebral fracture and from 48 upwards for hip fracture. International guidelines agree that agents that have been shown to decrease vertebral, nonvertebral and hip fractures should be used preferentially over agents that only demonstrate vertebral antifracture efficacy. This is the case for alendronate, risedronate, zoledronic acid, denosumab and strontium ranelate. Finally, therapeutic decisions should be based on a balance between benefits and risks of treatment, which must be carefully considered in each particular case both by the physician and the patient. Indeed, no single agent is appropriate for all patients and, therefore, treatment decisions should be made on an individual basis, taking into account all measures of treatment effect and risk before making informed judgments about the best individual treatment option.
Collapse
Affiliation(s)
- Jean-Yves Reginster
- Bone and Cartilage Metabolism Research Unit, CHU Centre - Ville, Liege, Belgium.
| |
Collapse
|
40
|
Reginster JY, Neuprez A. Strontium ranelate: a look back at its use for osteoporosis. Expert Opin Pharmacother 2011; 11:2915-27. [PMID: 21050035 DOI: 10.1517/14656566.2010.533170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Osteoporosis is now considered a major health problem in all developed and in most developing (non-African) countries. AREAS COVERED IN THIS REVIEW In this review, we provide an extensive literature survey (MEDLINE, PubMed, Cochrane Controlled Register), for articles dealing with osteoporosis management and/or strontium ranelate, from 1920 to 2010. WHAT THE READER WILL GAIN The objective is to provide an extensive, unbiased assessment of the available data allowing strontium ranelate to be placed in perspective with other anti-osteoporosis treatments. TAKE HOME MESSAGE Owing to a positive benefit-to-risk ratio, strontium ranelate may now be considered a first-line treatment in the management of osteoporosis.
Collapse
|
41
|
Abstract
This is a review of the pharmacology of strontium ranelate (Protelos, Protos, Protaxos, Bivalos, Osseor), and its efficacy and tolerability in the treatment of patients with postmenopausal osteoporosis. Strontium ranelate is a divalent strontium salt of ranelic acid that is capable of increasing bone formation and reducing bone resorption, thereby uncoupling and rebalancing bone turnover in favour of bone formation. The drug is effective in reducing the risk of fractures, including both vertebral and nonvertebral fractures, in patients with postmenopausal osteoporosis, according to data from two large, double-blind, placebo-controlled, multicentre trials of 5 years' duration, and reduced the risk of hip fracture in high-risk patients in a post hoc analysis of one trial. Moreover, data from patients who continued to receive the drug during the 3-year extension phase of these trials indicate that strontium ranelate continues to provide protection against new vertebral fractures and nonvertebral fractures for up to 8 years of therapy. It also improves bone mineral density at numerous sites and both increases markers of bone formation and decreases markers of bone resorption. Strontium ranelate is administered orally as a suspension and is generally well tolerated. The nature of adverse events was generally similar regardless of treatment duration in clinical trials, with the most commonly reported being nausea and diarrhoea over 5 years of treatment, and memory loss and diarrhoea during longer-term treatment. Although an increased risk of venous thromboembolism was associated with strontium ranelate relative to placebo over 5 years of treatment in a pooled analysis of clinical trials, postmarketing data have not confirmed this finding. Overall, the clinical data available suggest that strontium ranelate is an effective and generally well tolerated option for the first-line treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Emma D Deeks
- Adis, a Wolters Kluwer Business, Auckland, New Zealand.
| | | |
Collapse
|
42
|
&NA;. Strontium ranelate: a guide to its use in postmenopausal osteoporosis. DRUGS & THERAPY PERSPECTIVES 2010. [DOI: 10.2165/11206220-000000000-00000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|