1
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024; 96:203-220. [PMID: 38265172 PMCID: PMC11579821 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| |
Collapse
|
2
|
Reddi KK, Zhang W, Shahrabi-Farahani S, Anderson KM, Liu M, Kakhniashvili D, Wang X, Zhang YH. Tetraspanin CD82 Correlates with and May Regulate S100A7 Expression in Oral Cancer. Int J Mol Sci 2024; 25:2659. [PMID: 38473906 PMCID: PMC10932236 DOI: 10.3390/ijms25052659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kiran Kumar Reddi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - Weiqiang Zhang
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- USDA-ARS, Pollinator Health in Southern Crop Ecosystem Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS 38776, USA
| | - Shokoufeh Shahrabi-Farahani
- Department of Diagnostic Sciences, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - Kenneth Mark Anderson
- Department of Diagnostic Sciences, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - Mingyue Liu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - David Kakhniashvili
- The Proteomics & Metabolomics Core Facility, University of Tennessee Health Science Center, 71 S. Manassas, Suite 110, Memphis, TN 38163, USA
| | - Xusheng Wang
- Department of Genetics, Genomics & Informatics, University of Tennessee Health Science Center, 71 S. Manassas, Room 410H, Memphis, TN 38163, USA
| | - Yanhui H. Zhang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Kompuinen J, Keskin M, Yilmaz D, Gürsoy M, Gürsoy UK. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells 2023; 12:cells12060830. [PMID: 36980171 PMCID: PMC10047923 DOI: 10.3390/cells12060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers are malignant growths with high death rates, which makes the early diagnosis of the affected patients of utmost importance. Over 90% of oral cavity cancers come from squamous cells, and the tongue, oral cavity, and salivary glands are the most common locations for oral squamous cell carcinoma lesions. Human β-defensins (hBDs), which are mainly produced by epithelial cells, are cationic peptides with a wide antimicrobial spectrum. In addition to their role in antimicrobial defense, these peptides also take part in the regulation of the immune response. Recent studies produced evidence that these small antimicrobial peptides are related to the gene and protein expression profiles of tumors. While the suppression of hBDs is a common finding in head and neck cancer studies, opposite findings were also presented. In the present narrative review, the aim will be to discuss the changes in the hBD expression profile during the onset and progression of head and neck cancers. The final aim will be to discuss the use of hBDs as diagnostic markers of head and neck cancers.
Collapse
Affiliation(s)
- Jenna Kompuinen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altınbaş University, İstanbul 34147, Turkey
| | - Dogukan Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya 54050, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
4
|
Occurrence of Human Defensins and S100 Proteins in Head and Neck Basal Cell Carcinoma (BCC) Entities: hBD3 and S100A4 as Potential Biomarkers to Evaluate Successful Surgical Therapy. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2023. [DOI: 10.3390/ohbm4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: The goal of this study is the identification of potential marker molecules for characterizing different basal cell carcinoma entities, to help improve clinical decisions for surgical resection therapy. Methods: Three different entities, sclerodermiform, solid and superficial basal cell carcinomas, were subjected to immunohistochemical microscopy and histomorphometric analyses for human α- (DEFA1/3; DEFA4) and β-defensins (hBD1/2/3) and special S100 proteins (S100A4/7/8/9). Thirty specimens of the three entities were evaluated. Analyses were performed by comparing tissue and cellular localization and staining intensities of tumorous with non-tumorous areas. Staining intensities were semiquantitatively examined by using an RGB-based model. Results: Human defensins are present in all three entities of basal cell carcinomas. They all show cytoplasmic immunostaining in cells of the epithelium, stroma and tumor. Notably, human β-defensin3 is accumulated in the cell nuclei of sclerodermiform and superficial basal cell carcinomas. S100A4 and A7 are undetectable in tumor regions. However, S100A4 occurs in cancer-associated stroma cells with nuclear staining in superficial basal cell carcinomas. Conclusion: Two candidates, namely hBD3 and S100A4, might be used as potential clinical tools for evaluating successful surgical resection therapy to avoid aesthetic and functional facial deformation.
Collapse
|
5
|
Bharucha JP, Sun L, Lu W, Gartner S, Garzino-Demo A. Human Beta-Defensin 2 and 3 Inhibit HIV-1 Replication in Macrophages. Front Cell Infect Microbiol 2021; 11:535352. [PMID: 34277460 PMCID: PMC8281893 DOI: 10.3389/fcimb.2021.535352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Human beta-defensins (hBDs) are broad-spectrum antimicrobial peptides, secreted by epithelial cells of the skin and mucosae, and astrocytes, which we and others have shown to inhibit HIV-1 in primary CD4+ T cells. Although loss of CD4+ T cells contributes to mucosal immune dysfunction, macrophages are a major source of persistence and spread of HIV and also contribute to the development of various HIV-associated complications. We hypothesized that, besides T cells, hBDs could protect macrophages from HIV. Our data in primary human monocyte-derived macrophages (MDM) in vitro show that hBD2 and hBD3 inhibit HIV replication in a dose-dependent manner. We determined that hBD2 neither alters surface expression of HIV receptors nor induces expression of anti-HIV cytokines or beta-chemokines in MDM. Studies using a G-protein signaling antagonist in a single-cycle reporter virus system showed that hBD2 suppresses HIV at an early post-entry stage via G-protein coupled receptor (GPCR)-mediated signaling. We find that MDM express the shared chemokine-hBD receptors CCR2 and CCR6, albeit at variable levels among donors. However, cell surface expression analyses show that neither of these receptors is necessary for hBD2-mediated HIV inhibition, suggesting that hBD2 can signal via additional receptor(s). Our data also illustrate that hBD2 treatment was associated with increased expression of APOBEC3A and 3G antiretroviral restriction factors in MDM. These findings suggest that hBD2 inhibits HIV in MDM via more than one CCR thus adding to the potential of using β-defensins in preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer P Bharucha
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lingling Sun
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wuyuan Lu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Suzanne Gartner
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:149-171. [DOI: 10.1007/978-981-13-3588-4_10] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Stoeckelhuber M, Loeffelbein DJ, Olzowy B, Schmitz C, Koerdt S, Kesting MR. Labial Salivary Glands in Infants: Histochemical Analysis of Cytoskeletal and Antimicrobial Proteins. J Histochem Cytochem 2017; 64:502-10. [PMID: 27439958 DOI: 10.1369/0022155416656940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
Human labial glands secrete mucous and serous substances for maintaining oral health. The normal microbial flora of the oral cavity is regulated by the acquired and innate immune systems. The localization and distribution of proteins of the innate immune system were investigated in serous acinar cells and the ductal system by the method of immunohistochemistry. Numerous antimicrobial proteins could be detected in the labial glands: β-defensin-1, -2, -3; lysozyme; lactoferrin; and cathelicidin. Cytoskeletal components such as actin, myosin II, cytokeratins 7 and 19, α- and β-tubulin were predominantly observed in apical cell regions and may be involved in secretory activities.
Collapse
Affiliation(s)
- Mechthild Stoeckelhuber
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| | - Denys J Loeffelbein
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| | - Bernhard Olzowy
- Department of Otorhinolaryngology, Ludwig Maximilians University of Munich, Munich, Germany (BO)
| | - Christoph Schmitz
- Department of Neuroanatomy, Ludwig Maximilians University of Munich, Munich, Germany (CS)
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| | - Marco R Kesting
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| |
Collapse
|
8
|
Defensins: natural component of human innate immunity. Hum Immunol 2013; 74:1069-79. [PMID: 23756165 DOI: 10.1016/j.humimm.2013.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
The widespread use of antibiotics has contributed to a huge increase in the number of resistant bacteria. New classes of drugs are therefore being developed of which defensins are a potential source. Defensins are a group of antimicrobial peptides found in different living organisms, involved in the first line of defense in their innate immune response against pathogens. This review summarizes the results of studies of this family of human antimicrobial peptides (AMPs). There is a special emphasis on describing the entire group and individual peptides, history of their discovery, their functions and expression sites. The results of the recent studies on the use of the biologically active peptides in human medicine are also presented. The pharmaceutical potential of human defensins cannot be ignored, especially considering their strong antimicrobial activity and properties such as low molecular weight, reduced immunogenicity, broad activity spectrum and resistance to proteolysis, but there are still many challenges and questions regarding the possibilities of their practical application.
Collapse
|
9
|
Zhao J, Mi W, Sun HY, Chen HJ, Sun XL, Zeng Y, Sheng ZL. Significance of expression of S100A7 mRNA and protein in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:1509-1514. [DOI: 10.11569/wcjd.v20.i17.1509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of S100A7 mRNA and protein in gastric carcinoma, and to analyze the relationship between S100A7 expression and clinicopathological features of gastric carcinoma.
METHODS: In situ hybridization and immunohistochemistry were used to detect the expressions of S100A7 mRNA and protein in 53 cases of gastric carcinoma and 53 cases of normal gastric mucosa, respectively. SPSS13.0 software was utilized to analyze the relationship between S100A7 expression and clinicopathological features of gastric carcinoma.
RESULTS: The positive rates of S100A7 mRNA and protein expression in gastric carcinoma were significantly higher than those in normal gastric mucosa (77.36% vs 15.09%, 71.70% vs 13.21%; χ2 = 41.330, 37.110, both P = 0.000). Expression of S100A7 mRNA and protein was not associated with age or sex (both P > 0.05), but was closely related to differentiation degree, invasion depth, TNM stage and lymph node metastasis in gastric carcinoma (all P < 0.05).
CONCLUSION: S100A7 overexpression may play a pivotal role in the occurrence and development of gastric carcinoma, representing a novel marker for evaluating the malignant degree of gastric carcinoma.
Collapse
|
10
|
Berencsi G, Takács M. Barriers of the Human Organism and Their Achilles’ Heels. MATERNAL FETAL TRANSMISSION OF HUMAN VIRUSES AND THEIR INFLUENCE ON TUMORIGENESIS 2012. [PMCID: PMC7121758 DOI: 10.1007/978-94-007-4216-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human body is covered by barriers separating it from the external and internal surroundings. The “milieu enterieur” has to be stabilised in spite of the variable external and internal conditions of toxic, osmotic, microbial and climatic environmental circumstances. This first line of barriers is composed of skin and mucous membranes of complicated structures. A second line of barrier system is present in our organisms. Certain organs have to be separated from the immune system and other parts of the body because of evolutionary reasons (eye-bulb and testicles) because of unique proteins “unknown” for the acquired immune system. The blood-brain barrier (BBB) is providing enhanced safety circumstances for the central nervous system. The second line of barriers is represented by the special properties of the capillary endothelial system. The maternal-fetal barrier is the most complex. At the maternal fetal interface two individuals of two different haplotypes has to be live 9 months separated by a very complicated dynamic barrier. The placenta is the organ, which is separating the maternal and fetal tissues. Similar to others the bidirectional transport of gasses, metabolites, cells, proteins, regulatory substances, are transported by active or passive transcellular and intercellular mechanisms. The fetal immune system develops immunotolerance to all maternal cells and antigens transferred transplacentally. The problem is to mitigate the maternal immune system to tolerate the paternal haplotype of the fetus. In the case of normal pregnancy a complex series of physiological modifications can solve the problem without harmful consequences to the mother and fetus. The outermost contact cells of trophoblasts express instead of HLA-class Ia and class II antigens non-variable HLA-C, HLA-E, HLA-F and HLA-G antigens. The first consequence of this is reduction of the activity of maternal natural killer cells and maternal dendritic cells; Progesteron, micro-RNA and mediators influence the development of T effector-cells. The production of soluble HLA-G(5 and 6) and IL-10 supports the differentiation of Th-2 CD4+ helper cells, reducing the ability of maternal cells to kill fetal cells. Series of receptors and costimulators are expressed by the different lines of semi-allogenic trophoblast cells to bind HLA-G and mitigate maternal immune response; The maternal immunotolerance is further facilitated by the activation of CD4+CD25brightFoxp3+ regulatory T (TREG) cells. Infections have to be prevented during pregnancy. The cells of placenta express 10 Toll-like receptors a group of pattern recognition receptors responsible for innate immunity. The interferon level is also higher in the placental tissues than in the somatic fetal or maternal cells. The complement system is also adapted to the requirements of the pregnancy and fetal damage is inhibited by the production of “assymmetric IgG antibodies” under hormonal and placental-regulation. These modifications prevent the activation of complement, cytotoxic activity, opsonising ability, antigen clearance and precipitating activity of the molecules. The Achilles’ heels of the different barriers are regularly found by virus infections. Lamina cribrosa of the blood-brain barrier, optical nerve of the eyes, etc. the risk factors of the maternal-fetal barrier has been summarised in Table 1.1.
Collapse
|