1
|
Pitol AK, Richards S, Mirindi P, Mahamed HO, Baller A, Hughes GL, Beck SE. Efficacy of Disinfectants for Monkeypox Virus Inactivation on High Touch Surface Materials in Low-Resource Settings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19981-19989. [PMID: 39481121 PMCID: PMC11562733 DOI: 10.1021/acs.est.4c09821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Disinfection efficacy tests were conducted on surface carriers inoculated with the monkeypox virus (MPXV) by applying six disinfectant solutions (and three controls) on six surfaces common in low-resource settings: four nonporous surfaces (stainless steel, glass, plastic, and latex) and two porous surfaces (ceramic and wood). Disinfectants were wiped on carriers in triplicate, with a 1 min contact time: 0.05 and 0.5% sodium hypochlorite, 70% ethanol, two quaternary ammonium compound (QAC)-based disinfectants, and 1.4% hydrogen peroxide. MPXV was then quantified, and log10 removal values were calculated. Sodium hypochlorite (0.05 and 0.5%) and ethanol (70%) removed MPXV to below detection level, ≥ 99.97% reduction for nonporous surfaces, and ≥99.40% for wood, QAC-based disinfectants were efficacious on nonporous surfaces (≥99.97% inactivation) but had diminished efficacy on wood, a porous surface, and 1.4% H2O2 had limited efficacy across all tested surfaces. Results varied by disinfectant type and surface type. Based on our results, we recommend using 0.05% sodium hypochlorite or 70% ethanol with 1 min contact time to inactive MPXV on clean nonporous and porous surfaces. As MPXV is evolving, future research with additional disinfectants, application methods, and environmental conditions and research to understand adsorption, disinfection efficacy, and transmission risk on porous surfaces are needed to develop practical disinfection recommendations.
Collapse
Affiliation(s)
- Ana K. Pitol
- Departments
of Vector Biology and Tropical Disease Biology, Centre for Neglected
Tropical Diseases, Liverpool School of Tropical
Medicine, L3 5QA Liverpool, U.K.
| | - Siobhan Richards
- Departments
of Vector Biology and Tropical Disease Biology, Centre for Neglected
Tropical Diseases, Liverpool School of Tropical
Medicine, L3 5QA Liverpool, U.K.
| | - Patrick Mirindi
- Department
of Civil Engineering, University of British
Columbia, 2002-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hibak O. Mahamed
- Infection
Prevention and Control (IPC) and Water, Sanitation and Hygiene (WASH)
Team, Country Readiness Strengthening (CRS) Department, WHO Health Emergencies (WHE) Programme, World Health
Organization, 1211 Geneva, Switzerland
| | - April Baller
- Infection
Prevention and Control (IPC) and Water, Sanitation and Hygiene (WASH)
Team, Country Readiness Strengthening (CRS) Department, WHO Health Emergencies (WHE) Programme, World Health
Organization, 1211 Geneva, Switzerland
| | - Grant L. Hughes
- Departments
of Vector Biology and Tropical Disease Biology, Centre for Neglected
Tropical Diseases, Liverpool School of Tropical
Medicine, L3 5QA Liverpool, U.K.
| | - Sara E. Beck
- Department
of Civil Engineering, University of British
Columbia, 2002-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Dajani R, Coetsee M, Al-Tabba A, Al-Hussaini M. Correction: Religion, Islam, and Compliance with COVID-19 Best Practices. JOURNAL OF RELIGION AND HEALTH 2023:1-2. [PMID: 36932226 PMCID: PMC10022933 DOI: 10.1007/s10943-023-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Rana Dajani
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Marilie Coetsee
- Jepson School of Leadership Studies, University of Richmond, Richmond, VA, USA.
| | | | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
3
|
Dajani R, Coetsee M, Al-Tabba A, Al-Hussaini M. Religion, Islam, and Compliance with COVID-19 Best Practices. JOURNAL OF RELIGION AND HEALTH 2022; 61:4155-4168. [PMID: 36030310 PMCID: PMC9419643 DOI: 10.1007/s10943-022-01621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
While many have implemented best practices intended to help stem the spread of COVID-19, there are also a substantial number of citizens, both domestically and abroad, who have resisted these practices. We argue that public health authorities, as well as scientific researchers and funders, should help address this resistance by putting greater effort into ascertaining how existing religious practices and beliefs align with COVID-19 guidelines. In particular, we contend that Euro-American scholars-who have often tended to implicitly favor secular and Christian worldviews-should put added focus on how Islamic commitments may (or may not) support COVID-19 best practices, including practices that extend beyond the domain of support for mental health.
Collapse
Affiliation(s)
- Rana Dajani
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Marilie Coetsee
- Jepson School of Leadership Studies, University of Richmond, Richmond, VA, USA.
| | | | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
4
|
Henriques TM, Rito B, Proença DN, Morais PV. Application of an Ultrasonic Nebulizer Closet in the Disinfection of Textiles and Footwear. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10472. [PMID: 36078188 PMCID: PMC9518335 DOI: 10.3390/ijerph191710472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The emergence of the coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of disinfection processes in health safety. Textiles and footwear have been identified as vectors for spreading infections. Therefore, their disinfection can be crucial to controlling pathogens' dissemination. The present work aimed to evaluate the effectiveness of a commercial disinfectant aerosolized by an ultrasonic nebulizer closet as an effective method for disinfecting textiles and footwear. The disinfection was evaluated in three steps: suspension tests; nebulization in a 0.08 m3 closet; nebulization in the upscaled 0.58 m3 closet. The disinfection process of textiles and footwear was followed by the use of bacteriophages, bacterial spores, and bacterial cells. The disinfection in the 0.58 m3 closet was efficient for textiles (4 log reduction) when bacteriophage Lambda, Pseudomonas aeruginosa, and Bacillus subtilis were used. The footwear disinfection was achieved (4 log reduction) in the 0.08 m3 closet for Escherichia coli and Staphylococcus aureus. Disinfection in an ultrasonic nebulization closet has advantages such as being quick, not wetting, being efficient on porous surfaces, and is performed at room temperature. Ultrasonic nebulization disinfection in a closet proves to be useful in clothing and footwear stores to prevent pathogen transmission by the items' widespread handling.
Collapse
Affiliation(s)
- Tiago M. Henriques
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- IATV—Instituto do Ambiente Tecnologia e Vida, 3030-790 Coimbra, Portugal
| | - Beatriz Rito
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Diogo N. Proença
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Paula V. Morais
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
5
|
String GM, Kamal Y, Gute DM, Lantagne DS. Chlorine efficacy against bacteriophage Phi6, a surrogate for enveloped human viruses, on porous and non-porous surfaces at varying temperatures and humidity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:685-693. [PMID: 35912697 DOI: 10.1080/10934529.2022.2101845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
While efficacy of chlorine against Phi6, a widely-used surrogate for pathogenic enveloped viruses, is well-documented, surfaces common to low-resource contexts are under-researched. We evaluated seven surfaces (stainless steel, plastic, nitrile, tarp, cloth, concrete, wood) and three environmental conditions-temperature (4, 25, 40 °C), relative humidity (RH) (23, 85%), and soiling-to determine Phi6 recoverability and the efficacy of disinfection with 0.5% NaOCl. Overall, Phi6 recovery was >4 log10 PFU/mL on most surfaces after drying 1 hour at all temperature/humidity conditions. After disinfection, all non-porous test conditions (48/48) achieved ≥4 LRV at 1 and 5 minutes of exposure; significantly more non-porous surfaces met ≥4 LRV than porous (p < 0.001). Comparing porous surfaces, significantly fewer wood samples met ≥4 LRV than cloth (p < 0.001); no differences were observed between concrete and either wood (p = 0.083) or cloth (p = 0.087). Lastly, no differences were observed between soil and no-soil conditions for all surfaces (p = 0.712). This study highlights infectious Phi6 is recoverable across a range of surfaces and environmental conditions, and confirms the efficacy of chlorine disinfection. We recommend treating all surfaces with suspect contamination as potentially infectious, and disinfecting with 0.5% NaOCl for the minimum contact time required for the target enveloped virus (e.g. Ebola, SARS-CoV-2).
Collapse
Affiliation(s)
- Gabrielle M String
- Lancon Environmental LLC, Cambridge, Massachusetts, USA
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yarmina Kamal
- Lancon Environmental LLC, Cambridge, Massachusetts, USA
| | - David M Gute
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
6
|
Kruszewska E, Czupryna P, Pancewicz S, Martonik D, Bukłaha A, Moniuszko-Malinowska A. Is Peracetic Acid Fumigation Effective in Public Transportation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052526. [PMID: 35270221 PMCID: PMC8909421 DOI: 10.3390/ijerph19052526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic made more people aware of the danger of viruses and bacteria, which is why disinfection began to be used more and more often. Epidemiological safety must be ensured not only in gathering places, but also in home and work environments. It is especially challenging in public transportation, which is a perfect environment for the spread of infectious disease. Therefore, the aim of the study was the identification of bacteria in crowded places and the evaluation of the effect of fumigation with peracetic acid (PAA) in public transportation. Inactivation of microorganisms in buses and long-distance coaches was carried out using an automatic commercial fogging device filled with a solution of peracetic acid stabilized with acetic acid (AA) and hydrogen peroxide (H2O2). Before and after disinfection, samples were taken for microbiological tests. The most prevalent bacteria were Micrococcus luteus and Bacillus licheniformis.Staphylococcus epidermidis was only present in buses, whereas Staphylococcus hominis and Exiguobacterium acetylicum were only present in coaches. Statistical analysis showed a significant reduction in the number of microorganisms in samples taken from different surfaces after disinfection in vehicles. The overall effectiveness of disinfection was 81.7% in buses and 66.5% in coaches. Dry fog fumigation with peracetic acid is an effective method of disinfecting public transport vehicles.
Collapse
Affiliation(s)
- Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540 Białystok, Poland; (P.C.); (S.P.); (A.M.-M.)
- Correspondence:
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540 Białystok, Poland; (P.C.); (S.P.); (A.M.-M.)
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540 Białystok, Poland; (P.C.); (S.P.); (A.M.-M.)
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Żurawia 14, 15-540 Białystok, Poland;
| | - Anna Bukłaha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Waszyngtona 15A, 15-269 Białystok, Poland;
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540 Białystok, Poland; (P.C.); (S.P.); (A.M.-M.)
| |
Collapse
|
7
|
Jadidi A, Irannejad B, Mohsenifard M, Hezave AK, Aghaepour SM. Comparison of the Antimicrobial Effect of Zataria Multiflora Essence and Deconex Surface on Microbial Load of Emergency Ambulances. INQUIRY: THE JOURNAL OF HEALTH CARE ORGANIZATION, PROVISION, AND FINANCING 2022; 59:469580221093454. [PMID: 35583187 PMCID: PMC9121464 DOI: 10.1177/00469580221093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study aimed to compare the antimicrobial effect of Deconex Surface, a common disinfectant, and Zataria multiflora essence on microbial load of Emergency ambulance equipment in Iran. The samples were selected from all the ambulances through convenience sampling. Before the intervention, the cultures were obtained from the contact surfaces and the surfaces were then disinfected with Deconex and Zataria multiflora. Then, repeated cultures were obtained from the same surfaces. Next, the samples were immediately sent to a microbiology lab. The obtained data were entered into SPSS 2016 and analyzed using statistical tests. Results showed that disinfecting effect of Zataria multiflora is better than Deconex in eliminating certain bacterial species such as Staphylococcus and Bacillus. So Zataria multiflora essence can be used as a surface and hospital equipment disinfectant along with other disinfectant compounds.
Collapse
Affiliation(s)
- Ali Jadidi
- Department of Nursing, Arak University of Medical Science, Arak, Iran
| | - Behrooz Irannejad
- Department of Emergency Medicine, Crisis Management and Emergency Medical Services of Markazi Province, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Mohsenifard
- Department of Emergency Medicine, Crisis Management and Emergency Medical Services of Markazi Province, Arak University of Medical Sciences, Arak, Iran
| | | | | |
Collapse
|
8
|
String GM, White MR, Gute DM, Mühlberger E, Lantagne DS. Selection of a SARS-CoV-2 Surrogate for Use in Surface Disinfection Efficacy Studies with Chlorine and Antimicrobial Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:995-1001. [PMID: 37566364 PMCID: PMC8491555 DOI: 10.1021/acs.estlett.1c00593] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 05/16/2023]
Abstract
Initial recommendations for surface disinfection to prevent SARS-CoV-2 transmission were developed using previous evidence from potential surrogates. To the best of our knowledge, no appropriate surrogate for SARS-CoV-2 has been identified or confirmed for chlorine and antimicrobial surface disinfection. We completed a study to evaluate the efficacy of two hypothesized antimicrobial surfaces, and four chlorine solutions on nonporous and porous surfaces, against SARS-CoV-2 and three potential SARS-CoV-2 surrogates [coronavirus mouse hepatitis virus (MHV) and bacteriophages Phi6 and MS2], to identify a BSL-1 or BSL-2 virus to use in future studies. We found SARS-CoV-2 can be reduced >4 log10 on porous and nonporous surfaces within 30 s upon exposure to 0.5% NaOCl. The results indicate coronavirus MHV-GFP is inactivated faster than SARS-CoV-2 (MHV-GFP ≥ 6.08 log10; SARS-CoV-2 = 0.66 log10 at 30 s with 0.05% NaOCl on steel) and MS2 is inactivated more slowly. Phi6 is inactivated like SARS-CoV-2, and we propose Phi6 as a slightly conservative surrogate for SARS-CoV-2 chlorine disinfection. Additionally, disinfection of bacteriophages on wood was challenging, and exposure to antimicrobial surfaces had no disinfection efficacy as tested. We recommend using 0.5% chlorine on surfaces for a minimum of 30 s of contact to disinfect SARS-CoV-2 and recommend additional research on Phi6 disinfection with varied surfaces and conditions.
Collapse
Affiliation(s)
- Gabrielle M. String
- Lancon Environmental, LLC,
Cambridge, Massachusetts 02140, United States
- Civil and Environmental Engineering,
Tufts University School of Engineering, Medford,
Massachusetts 02155, United States
| | - Mitchell R. White
- Department of Microbiology, Boston
University School of Medicine, Boston, Massachusetts 02118,
United States
- National Emerging Infectious Diseases Laboratories,
Boston University, Boston, Massachusetts 02118,
United States
| | - David M. Gute
- Civil and Environmental Engineering,
Tufts University School of Engineering, Medford,
Massachusetts 02155, United States
| | - Elke Mühlberger
- Department of Microbiology, Boston
University School of Medicine, Boston, Massachusetts 02118,
United States
- National Emerging Infectious Diseases Laboratories,
Boston University, Boston, Massachusetts 02118,
United States
| | | |
Collapse
|