1
|
Tam CC, Du WX, Wang Y, Flannery AR, He X. Rapid and Sensitive Detection of Shiga Toxin-Producing Escherichia coli (STEC) from Food Matrices Using the CANARY Biosensor Assay. Toxins (Basel) 2024; 16:325. [PMID: 39057965 PMCID: PMC11281303 DOI: 10.3390/toxins16070325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Previously, we developed a rapid, sensitive, and potentially portable assay that identified STEC by detecting Shiga toxin (Stx) using a B-cell based biosensor platform. We applied this assay to detect Stx2 present in food samples that have been implicated in previous STEC foodborne outbreaks (milk, lettuce, and beef). The STEC enrichment medium, modified Tryptone Soy Broth (mTSB), inhibited the biosensor assay, but dilution with the assay buffer relieved this effect. Results with Stx2a toxoid-spiked food samples indicated an estimated limit of detection (LOD) of ≈4 ng/mL. When this assay was applied to food samples inoculated with STEC, it was able to detect 0.4 CFU/g or 0.4 CFU/mL of STEC at 16 h post incubation (hpi) in an enrichment medium containing mitomycin C. Importantly, this assay was even able to detect STEC strains that were high expressors of Stx2 at 8 hpi. These results indicate that the STEC CANARY biosensor assay is a rapid and sensitive assay applicable for detection of STEC contamination in food with minimal sample processing that can complement the current Food Safety Inspection Service (US) methodologies for STEC.
Collapse
Affiliation(s)
- Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| | - Wen-Xian Du
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| | - Yangyang Wang
- Smiths Detection, 2202 Lakeside Blvd, Edgewood, MD 21040, USA; (Y.W.); (A.R.F.)
| | - Andrew R. Flannery
- Smiths Detection, 2202 Lakeside Blvd, Edgewood, MD 21040, USA; (Y.W.); (A.R.F.)
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| |
Collapse
|
2
|
Tam CC, Wang Y, Du WX, Flannery AR, He X. Development of a Rapid and Sensitive CANARY Biosensor Assay for the Detection of Shiga Toxin 2 from Escherichia coli. Toxins (Basel) 2024; 16:148. [PMID: 38535814 PMCID: PMC10975195 DOI: 10.3390/toxins16030148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2025] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). The current Food Safety Inspection Service (FSIS) testing methods for STEC use the Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) protocol, which includes enrichment, cell plating, and genomic sequencing and takes time to complete, thus delaying diagnosis and treatment. We wanted to develop a rapid, sensitive, and potentially portable assay that can identify STEC by detecting Shiga toxin (Stx) using the CANARY (Cellular Analysis and Notification of Antigen Risks and Yields) B-cell based biosensor technology. Five potential biosensor cell lines were evaluated for their ability to detect Stx2. The results using the best biosensor cell line (T5) indicated that this biosensor was stable after reconstitution with assay buffer covered in foil at 4 °C for up to 10 days with an estimated limit of detection (LOD) of ≈0.1-0.2 ng/mL for days up to day 5 and ≈0.4 ng/mL on day 10. The assay detected a broad range of Stx2 subtypes, including Stx2a, Stx2b, Stx2c, Stx2d, and Stx2g but did not cross-react with closely related Stx1, abrin, or ricin. Additionally, this assay was able to detect Stx2 in culture supernatants of STEC grown in media with mitomycin C at 8 and 24 h post-inoculation. These results indicate that the STEC CANARY biosensor developed in this study is sensitive, reproducible, specific, rapid (≈3 min), and may be applicable for surveillance of the environment and food to protect public health.
Collapse
Affiliation(s)
- Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| | - Yangyang Wang
- Smiths Detection, 2202 Lakeside Boulevard, Edgewood, MD 21040, USA; (Y.W.); (A.R.F.)
| | - Wen-Xian Du
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| | - Andrew R. Flannery
- Smiths Detection, 2202 Lakeside Boulevard, Edgewood, MD 21040, USA; (Y.W.); (A.R.F.)
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| |
Collapse
|
3
|
Gebregziabher SM, Yalew AW, Sime H, Abera A. Molecular detection of waterborne pathogens in infants' drinking water and their relationship with water quality determinants in eastern Ethiopia: loop-mediated isothermal amplification (LAMP)-based study. JOURNAL OF WATER AND HEALTH 2024; 22:1-20. [PMID: 38295069 PMCID: wh_2023_201 DOI: 10.2166/wh.2023.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Cryptosporidium, Shigella, toxin-producing Escherichia coli, and rotavirus were reported to be the most responsible for severe and fatal diarrhea among infants. This study aimed to investigate the presence of these pathogens in infants' drinking water samples and analyzing using water quality determinants in eastern Ethiopia. A molecular (LAMP)-based cross-sectional study design was employed. A total of 410 and 37 water samples were tested from infant point-of-use at household and corresponding water source, respectively, from June 2020 to May, 2021. Cryptosporidium, Shigella, toxin-producing E. coli, and rotavirus were detected in 28.5, 30.0, 26.3, and 32.2%, of water samples tested from infant point-of-use, respectively. About 13.2% of the water samples were positive for all (four) pathogens together. Cryptosporidium, Shigella, toxin-producing E. coli, and rotavirus were detected in 27.0, 32.4, 29.7, and 37.8%, of water samples tested from water sources, respectively. Positive significant correlation was observed between infant point-of-consumption and water sources from which it is drawn toward the presence of each targeted pathogen. Unimproved water source showed a strong significant association with the presence of Cryptosporidium, Shigella and toxin-producing E. coli. Therefore, efforts should be made in development of improved water sources, source protection safety and health education to caretakers of infants.
Collapse
Affiliation(s)
| | - Alemayehu Worku Yalew
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Heven Sime
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, EPHI, Addis Ababa, Ethiopia
| | - Adugna Abera
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, EPHI, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Ray R, Singh P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022; 11:1332. [PMID: 36422584 PMCID: PMC9694250 DOI: 10.3390/pathogens11111332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes human gastrointestinal infections across the globe, leading to kidney failure or even death in severe cases. E. coli are commensal members of humans and animals' (cattle, bison, and pigs) guts, however, may acquire Shiga-toxin-encoded phages. This acquisition or colonization by STEC may lead to dysbiosis in the intestinal microbial community of the host. Wildlife and livestock animals can be asymptomatically colonized by STEC, leading to pathogen shedding and transmission. Furthermore, there has been a steady uptick in new STEC variants representing various serotypes. These, along with hybrids of other pathogenic E. coli (UPEC and ExPEC), are of serious concern, especially when they possess enhanced antimicrobial resistance, biofilm formation, etc. Recent studies have reported these in the livestock and food industry with minimal focus on wildlife. Disturbed natural habitats and changing climates are increasingly creating wildlife reservoirs of these pathogens, leading to a rise in zoonotic infections. Therefore, this review comprehensively surveyed studies on STEC prevalence in livestock and wildlife hosts. We further present important microbial and environmental factors contributing to STEC spread as well as infections. Finally, we delve into potential strategies for limiting STEC shedding and transmission.
Collapse
Affiliation(s)
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
5
|
Odetoyin B, Ogundipe O, Onanuga A. Prevalence, diversity of diarrhoeagenic Escherichia coli and associated risk factors in well water in Ile-Ife, Southwestern Nigeria. ONE HEALTH OUTLOOK 2022; 4:3. [PMID: 35130987 PMCID: PMC8822758 DOI: 10.1186/s42522-021-00057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diarrhoeagenic Escherichia coli (DEC) strains are common causes of morbidity and mortality worldwide. Waterborne DEC could pose a health risk to humans through domestic use of contaminated water. However, epidemiological studies on DEC in well water are scarce in Nigeria. This study determined the prevalence, diversity and factors associated with the presence of DEC in well water in Ile-Ife, southwestern Nigeria. METHODS We assessed 143 wells for safety and a questionnaire was administered. Contaminating isolates were identified as E. coli by amplifying their 16S rRNA gene. Five diarrhoeagenic E. coli pathotypes were sought using multiplex polymerase chain reaction (PCR). (GTG)5 repetitive PCR and Shannon diversity index were used to determine isolates diversity. Multivariate analysis was used to reveal the factors associated with the presence of DEC in well water. RESULTS Fifty-six (39.2%) wells were contaminated by diarrhoeagenic E. coli. Wells with dirty platforms, undercut by erosion and sited near septic tanks significantly harboured DEC (p < 0.05). There was a preponderance of Shiga-toxin producing E. coli among the isolates with 10 (17.9%) wells contaminated by multiple DEC. The DEC isolates showed 45 unique fingerprints and were divided into six clades, with an overall diversity index of 18.87. DISCUSSION The presence of DEC in well water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination. There is a need for periodic sanitation and inspection of wells for cracks to prevent seepages and possible outbreaks of waterborne diseases.
Collapse
Affiliation(s)
- Babatunde Odetoyin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olawumi Ogundipe
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adebola Onanuga
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|