1
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Cazals M, Bédard E, Soucy C, Savard P, Prévost M. How clean is your ice machine? Revealing microbial amplification and presence of opportunistic pathogens in hospital ice-water machines. J Hosp Infect 2023; 141:9-16. [PMID: 37604277 DOI: 10.1016/j.jhin.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Ice machines in healthcare facilities have been suspected and even linked to outbreaks and pseudo-outbreaks. Guidelines exist for maintenance of these devices but there is no clear independent infection control standard, and little is known about their microbial contamination. AIM To evaluate the microbial contamination, amplification, and presence of opportunistic pathogens in ice-water machines in a healthcare facility. METHODS Concentrations of general microbial indicators (heterotrophic plate counts (HPC), total and intact cells), faecal indicators (enterococci) and opportunistic pathogens (Pseudomonas aeruginosa, non-tuberculous mycobacteria (NTM), Candida spp.) were measured in 36 ice-water machines on patient wards of a 772-bed hospital. Profile sampling was performed on five ice-water machines and adjacent faucets to identify sites of microbial proliferation. FINDINGS Candida spp. were found in half of ice-water samples while enterococci and P. aeruginosa were present in six and 11 drain inlets respectively. NTM were measured in all ice-water samples and 35 out of 36 biofilms. Pre-filters and ice machines are sites for additional amplification: NTM densities were on average 1.3 log10 higher in water of ice machine flushed 5 min compared to flushed adjacent tap water. CONCLUSION Ice machine design needs to be adapted to reduce microbial proliferation. The absence of correlation between HPC densities (current microbial indicators) and NTM concentrations suggests a need for cleaning efficiency indicators better correlated with opportunistic pathogens. Cleaning and disinfection guidelines of ice machines in healthcare facilities need to be improved, especially when ice is given to the most vulnerable patients, and NTM may be an efficiency indicator.
Collapse
Affiliation(s)
- M Cazals
- Civil, Geological and Mining Engineering Department, Polytechnique Montréal, Montreal, Canada.
| | - E Bédard
- Civil, Geological and Mining Engineering Department, Polytechnique Montréal, Montreal, Canada
| | - C Soucy
- Infection Prevention and Control, University of Montreal Hospital Centre (CHUM), Montreal, Canada
| | - P Savard
- Infection Prevention and Control, University of Montreal Hospital Centre (CHUM), Montreal, Canada; Department of Microbiology, Infectious Diseases and Immunology and University of Montreal Hospital Centre Research Centre (CRCHUM), University of Montreal, Canada
| | - M Prévost
- Civil, Geological and Mining Engineering Department, Polytechnique Montréal, Montreal, Canada
| |
Collapse
|
3
|
Song Y, Finkelstein R, Rhoads W, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Impacts of Copper and Water Heater Anodes on Pathogens and Microbiomes in Hot Water Plumbing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13612-13624. [PMID: 37643149 PMCID: PMC10501123 DOI: 10.1021/acs.est.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Hot water building plumbing systems are vulnerable to the proliferation of opportunistic pathogens (OPs), including Legionella pneumophila and Mycobacterium avium. Implementation of copper as a disinfectant could help reduce OPs, but a mechanistic understanding of the effects on the microbial community under real-world plumbing conditions is lacking. Here, we carried out a controlled pilot-scale study of hot water systems and applied shotgun metagenomic sequencing to examine the effects of copper dose (0-2 mg/L), orthophosphate corrosion control agent, and water heater anode materials (aluminum vs magnesium vs powered anode) on the bulk water and biofilm microbiome composition. Metagenomic analysis revealed that, even though a copper dose of 1.2 mg/L was required to reduce Legionella and Mycobacterium numbers, lower doses (e.g., ≤0.6 mg/L) measurably impacted the broader microbial community, indicating that the OP strains colonizing these systems were highly copper tolerant. Orthophosphate addition reduced bioavailability of copper, both to OPs and to the broader microbiome. Functional gene analysis indicated that both membrane damage and interruption of nucleic acid replication are likely at play in copper inactivation mechanisms. This study identifies key factors (e.g., orthophosphate, copper resistance, and anode materials) that can confound the efficacy of copper for controlling OPs in hot water plumbing.
Collapse
Affiliation(s)
- Yang Song
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Utilities
Department, Town of Cary, 316 N. Academy St., Cary, North Carolina 27512, United States
| | - Rachel Finkelstein
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- AECOM, 3101 Wilson Boulevard, Arlington, Virginia 22201, United States
| | - William Rhoads
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Black
& Veatch, 8400 Ward
Pkwy, Kansas City, Missouri 64114, United States
| | - Marc A. Edwards
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Song Y, Pruden A, Rhoads WJ, Edwards MA. Pilot-scale assessment reveals effects of anode type and orthophosphate in governing antimicrobial capacity of copper for Legionella pneumophila control. WATER RESEARCH 2023; 242:120178. [PMID: 37307684 DOI: 10.1016/j.watres.2023.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is sometimes applied as an antimicrobial for controlling Legionella in hot water plumbing systems, but its efficacy is inconsistent. Here we examined the effects of Cu (0 - 2 mg/L), orthophosphate corrosion inhibitor (0 or 3 mg/L as phosphate), and water heater anodes (aluminum, magnesium, and powered anodes) on both bulk water and biofilm-associated L. pneumophila in pilot-scale water heater systems. Soluble, but not total, Cu was a good predictor of antimicrobial capacity of Cu. Even after months of exposure to very high Cu levels (>1.2 mg/L) and low pH (<7), which increases solubility and enhances bioavailability of Cu, culturable L. pneumophila was only reduced by ∼1-log. Cu antimicrobial capacity was shown to be limited by various factors, including binding of Cu ions by aluminum hydroxide precipitates released from corrosion of aluminum anodes, higher pH due to magnesium anode corrosion, and high Cu tolerance of the outbreak-associated L. pneumophila strain that was inoculated into the systems. L. pneumophila numbers were also higher in several instances when Cu was dosed together with orthophosphate (e.g., with an Al anode), revealing at least one scenario where high levels of total Cu appeared to stimulate Legionella. The controlled, pilot-scale nature of this study provides new understanding of the limitations of Cu as an antimicrobial in real-world plumbing systems.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061; Utilities Department, Town of Cary, 316 N. Academy St., Cary, NC, 27512.
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - William J Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061; Black & Veatch, 8400 Ward Pkwy, Kansas City, MO, 64114
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061.
| |
Collapse
|