1
|
Rao JN, Parsai T. Heavy metal(loid) contamination in forest fire affected soil and surface water: pollution indices and human health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:378. [PMID: 40067407 DOI: 10.1007/s10661-025-13796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Forest fires, whether natural or anthropogenic, release and mobilize heavy metal(loids) (HM). Following intense rainfall events, soil-bound HM are transported from soil to surface water through surface runoff, leading to water quality deterioration. Pollution and ecological risk indices are effective tools for assessing HM contamination. Most forest fire-affected soils and surface water exhibited a degree of contamination greater than 3 and 8 (high and moderate pollution), with associated high and extremely high ecological risks (165 and 2389, respectively). Pollution indices revealed that soils were highly contaminated with Ni, Cu, Cr, and Pb, while Ni, Cu, Hg, Cd, and As posed significant ecological risks. Surface water was heavily contaminated with Pb, Mn, Al, and Fe, with Ni and V contributing to extremely high ecological risks. This study highlights that trace HM also requires substantial removal efforts to make water potable, with removal efficiencies needed for Sb (94.49%), Be (85.83%), Ba (70.75%), V (68.19%), and Se (65.51%). Fire-affected surface water poses an elevated cancer risk to both children (0.18 and 4.5 × 10-3) and adults (0.39 and 1.53 × 10-3) through oral and dermal exposure, respectively. Children are more vulnerable to dermal cancer and noncancer risks compared to adults. Low-cost treatment methods, such as the application of immobilizing agents combined with compost, straw mulching, and seeding, can be implemented to control soil erosion in forest areas, thereby reducing the transport of soil-bound HM to surface water. These findings can aid government agencies in developing new soil and water quality standards and implementing effective treatment measures.
Collapse
Affiliation(s)
- Jakki Narasimha Rao
- Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
2
|
Younas F, Sardar MF, Ullah Z, Ali J, Yu X, Zhu P, Guo W, Al-Anazi KM, Farah MA, Cui Z. Assessment of groundwater chemistry to predict arsenic contamination from a canal commanded area: applications of different machine learning models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:46. [PMID: 39786503 DOI: 10.1007/s10653-024-02334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Groundwater arsenic (As), contamination is a significant issue worldwide including China and Pakistan, particularly in canal command areas. In this study, 131 groundwater samples were collected, and three machine learning models [Random Forest (RF), Logistic Regression (LR), and Artificial Neural Network (ANN)] were employed to predict As concentration. Descriptive statistics helped to conclude that all of the samples were inside the permitted limit of WHO for pH, Ca, Mg, Turbidity, Cl, K, Na, SO4, NO3, F and beyond limit of WHO for EC, HCO3, TDS, and As. RF suggested a median drop in Gini node impurity across all tree divisions. This predicted As contamination in samples due to presence of TDS, EC, HCO3- and turbidity in upper end of graph which expressed significance of these factors in contaminating water with Arsenic. Moreover, these factors were found positively correlated with Ar contamination. LR model expressed about best fitness of model. ANN classified large data set into two classes i.e. (1) Inside limit of WHO and (2) and outside limit of WHO. Total dissolved solids (TDS), turbidity, sodium (Na) and electrical conductivity (EC) were positively correlated with Ar (Arsenic concentration) in the collected samples. pH and K were negatively associated with Arsenic concentration of the observed samples. Confusion matrices and ROC-AUC scores evaluated that RF, model outperforming than LR, and ANN, in accuracy and sensitivity. Key variables influencing As concentration in the groundwater resources of the study area were identified, such parameters include TDS, chloride (Cl), bicarbonate (HCO3-) and turbidity. The study provided the complete profile of the 131 water samples which can be used to make strategies for the minimization of ground Water contamination for Rohri canal command area. Moreover, the steps can be taken to control the discussed parameters inside the WHO limit.
Collapse
Affiliation(s)
- Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430070, China
| | - Jawad Ali
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Goni MA, Hosen L, Khan AS, Abdullah-Al-Mamun M, Khatun MJ, Siddiquee T. Elevated Uptake and Translocation Patterns of Heavy Metals in Different Food Plants Parts and Their Impacts on Human Health. Biol Trace Elem Res 2025; 203:512-534. [PMID: 38512452 DOI: 10.1007/s12011-024-04146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Irrigation with contaminated wastewater is a common practice in cultivation of crops and vegetables in many developing countries due to the scarcity of available fresh water. The present study has investigated the transfer and mobilization trends of heavy metals in different crops and vegetables plants grown in contaminated soil and waterbody. The translocation patterns of metals from polluted sources into different organs of plants bodies such as roots and edible parts and associated health risks have been evaluated simultaneously. Total of 180 different environmental samples including food plants, agricultural soil, and irrigation water were collected and analyzed. Heavy metal concentrations (Fe, Ni, Mn, Pb, Cu, Cd, As) in water, soil, and different parts of crops and vegetable plants were compared with the permissible levels reported by FAO/WHO, EU, and USEPA. Different metals contents within the food plants were found to be in the order of Fe > Mn > Ni > Cu > Pb > Cd > As. Pollution load index (PLI) data indicate that soil is highly polluted with Cd as well as moderately contaminated by As and Cu. Bioconcentration factor (BCF) analysis showed excessive accumulation of some heavy metals in crops and vegetables. Target hazard quotient (THQ) and target carcinogenic risk (TCR) analysis data showed higher carcinogenic and non-carcinogenic risks for both adult and children from the consumption of metal-contaminated food items. The results of metal pollution index (MPI), estimated daily intake (EDI), and hazard index (HI) analyses demonstrated the patterns of metals pollution in different food plants.
Collapse
Affiliation(s)
- Md Abdul Goni
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC, 29117, USA.
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Lokman Hosen
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Arsenic Centre, Pulerhat Jashore, 7400, Bangladesh
| | - M Abdullah-Al-Mamun
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Most Johura Khatun
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Tasneem Siddiquee
- Department of Chemistry, Tennessee State University, Nashville, TN, 37209, USA
| |
Collapse
|
4
|
Mohammadpour A, Gharehchahi E, Gharaghani MA, Shahsavani E, Golaki M, Berndtsson R, Khaneghah AM, Hashemi H, Abolfathi S. Assessment of drinking water quality and identifying pollution sources in a chromite mining region. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136050. [PMID: 39393318 DOI: 10.1016/j.jhazmat.2024.136050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Water sources near mining regions are often susceptible to contamination from toxic elements. This study employs machine learning (ML) techniques to evaluate drinking water quality and identify pollution sources near a chromite mine in Iran. Human health risks were assessed using both deterministic and probabilistic approaches. Findings revealed that concentrations of calcium (Ca), chromium (Cr), lithium (Li), magnesium (Mg), and sodium (Na) in the water samples exceeded international safety standards. The Unweighted Root Mean Square water quality index (RMS-WQI) and Weighted Quadratic Mean (WQM-WQI) categorized all water samples as 'Fair', with average scores of 67.95 and 67.19, respectively. Of the ML models tested, the Extra Trees (ET) algorithm emerged as the top predictor of WQI, with Mg and strontium (Sr) as key variables influencing the scores. Principal component analysis (PCA) identified three distinct clusters of water quality parameters, highlighting influences from both local geology and anthropogenic activities. The highest average hazard quotient (HQ) for Cr was 1.71 for children, 1.27 for adolescents, and 1.05 for adults. Monte Carlo simulation for health risk assessment indicated median hazard index (HI) of 4.48 for children, 3.58 for teenagers, and 2.98 for adults, all exceeding the acceptable threshold of 1. Total carcinogenic risk (TCR) exceeded the EPA's acceptable level for 99.38 % of children, 98.24 % of teenagers, and 100 % of adults, with arsenic (As) and Cr identified as the main contributors. The study highlights the need for urgent mitigation measures, recommending a 99 % reduction in concentrations of key contaminants to lower both carcinogenic and non-carcinogenic risks to acceptable levels.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Ehsan Gharehchahi
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Amiri Gharaghani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Shahsavani
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Golaki
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ronny Berndtsson
- Division of Water Resources Engineering, Department of Building and Environmental Technology, Lund University, Box 118, SE-221 00 Lund, Sweden; Centre for Advanced Middle Eastern Studies, Lund University, Box 201, SE-221 00 Lund, Sweden
| | - Amin Mousavi Khaneghah
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hasan Hashemi
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soroush Abolfathi
- School of Engineering, University of Warwick, Coventry CV47AL, United Kingdom.
| |
Collapse
|
5
|
Lahori AH, Tunio M, Ahmed SR, Mierzwa-Hersztek M, Vambol V, Afzal A, Kausar A, Vambol S, Umar A, Muhammad A. Role of pressmud compost for reducing toxic metals availability and improving plant growth in polluted soil: Challenges and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175493. [PMID: 39142404 DOI: 10.1016/j.scitotenv.2024.175493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Pressmud compost is an organic soil amendment and a robust technology that has potential to restore toxic metals (TMs) polluted soil. The application of organic amendments including pressmud compost in soil for toxic metals (TMs) alleviation have gained considerable attention as compared to traditional methods among the scientific community. In this review paper, we summarized the literature aiming to understand the immobilization efficacy of TMs such as cadmium, lead, chromium, copper, nickel, iron, zinc, and manganese, underlying mechanisms, plant growth, essential nutrients and soil health under pot, field and incubation conditions which has not been well investigated up-to-date. The application of pressmud compost at 10 t ha-1 rate has shown highly potential to reduce the bioavailability and bioaccumulation of TMs in the polluted soil. The immobilization mechanism of TMs in soil depends on soil pH, soil type, cation exchange capacity, hydraulic conditions, nutrients dynamics and soil properties. The application of pressmud compost integrated with biochar, compost, rock phosphate, farmyard manure, bagasse ash, molasses immobilized the cadmium, lead, copper, chromium, nickel and zinc in alkaline polluted soil, whereas pressmud compost combined with poultry manure and farmyard manure increased the bioavailability of lead, cadmium, cobalt, chromium, copper, zinc, iron and manganese in acidic soil, it could be due to aging of pressmud compost, application rate, metal type, nature of soil, particle size, application method, plant type and agronomic practices. There is a lack of knowledge on the phyto-management of arsenic, mercury and boron in soil amended with pressmud compost. Future studies must be focused on potential of pressmud compost co-amended with minerals, modified biochars and nano-material for immobilization of TMs in polluted soil-plant through machine learning/artificial intelligence in order to reduce the health risks and improve public health safety in urban and rural areas.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan.
| | - Maira Tunio
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Samreen Riaz Ahmed
- Department of English, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Viola Vambol
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Lublin, Poland; Department of Applied Ecology and Environmental Sciences, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine
| | - Ambreen Afzal
- National Institute of Maritime Affairs, Bahria University Karachi Campus, 75260, Pakistan
| | - Anila Kausar
- Department of Geography, University of Karachi, Pakistan
| | - Sergij Vambol
- Department of Occupational and Environmental Safety, National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine
| | - Aqsa Umar
- Department of Computer Science, Sindh Madressatul Islam University, Karachi, Pakistan
| | - Atif Muhammad
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| |
Collapse
|
6
|
Li Y, Kong L, Ma L, Zeng T, Liu W, Abuduwaili J. Deciphering the driving factors and probabilistic health risks of potentially toxic elements in arid surface water: Insights from the Tarim River Basin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117211. [PMID: 39427544 DOI: 10.1016/j.ecoenv.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Potentially toxic elements (PTEs) in surface water in arid areas pose a serious threat to environmental safety and human health within a basin. It is important to determine the factors controlling PTEs and to assess the likelihood that they will pose a risk to human health in order to support the development of environmental protection and risk management strategies. In this study, a structural equation model and Bayesian method were combined to discuss the distribution and probabilistic health risks of PTEs in surface water in arid area, and the Tarim River Basin was taken as a case study. The results show that the average concentrations of As, Co, Cu, and Ni in the surface water in the Tarim River Basin ranged from 0.04 to 2.92 μg/L, which do not exceed the international standard values. However, the maximum value of As (19.20 μg/L) exceeded both the recommended drinking water standards and the Chinese irrigation water standards. Spatially, the high As concentrations were distributed in the upper reaches of the Kashgar River, and the high Co, Cu and Ni concentrations were distributed in reservoirs and lakes on the main stream of the Tarim River. The concentrations of the PTEs in the surface water in the basin were not only affected by random anthropogenic factors such as traffic discharge, agricultural activities and mining industry, but were also directly and indirectly influenced by climatic factors. The results of the probabilistic health risk assessment showed that the 95th percentile the total hazard index for infants exceeded the allowable value of 1, and the total carcinogenic risk of PTEs exposure in four age groups was at the notable level. In this study, we conducted a comprehensive analysis of the controlling factors and health risks associated with PTEs in surface water in the Tarim River Basin, and the findings are expected to provide a scientific basis for regional water environment management and safety control.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Kong
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China.
| | - Tao Zeng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Nanda SP, Panda BP, Panigrahi KCS, Pradhan A. Ecological risk assessment of heavy metals contaminated mining sites of eastern india using soil and moss. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1029. [PMID: 39375203 DOI: 10.1007/s10661-024-13166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The blooming industrialization and urbanization is leading to increased mining operations. These intensified mining activities emit heavy metals into the environment, posing serious threats to ecosystems. Hence, this study focused on assessing heavy metal pollution in mining soil, utilizing mosses as bioindicators. The ecological risk, geo-accumulation factor, and contamination factor have been calculated to know the harmful effect of heavy metals on ecosystem. The study covered three distinct mining sites of eastern India within Odisha: Jajpur's Sukinda Valley (SP1, Cr), Keonjhar's Joda-Barbil (SP2, Fe and Mn), and Sundargarh's Koira-Joda (SP3, Fe). The collection of 48 soil samples through random sampling revealed significant variations in heavy metal concentrations. SP1 recorded Cr concentration of 6572 ± 445 mg/kg and Ni of 8042.47 ± 501.38 mg/kg, surpassing eco-toxicological levels. The storage site in SP2 exhibited the highest Fe concentration at 9872 ± 502 mg/kg, and Mn levels in SP3 were at 7884 ± 432 mg/kg. Storage areas in all three regions held the highest concentrations of heavy metals. Mosses in studied area demonstrated as potential bioindicators for monitoring heavy metal pollution. EF and Igeo assessments showed Cd, Pb, Hg, and other heavy metal contamination compared to earlier investigations. This study indicated higher ecological risks for Pb, As, Cu, Ni, and Zn. The Hyophila involuta accumulates Mn, Cr, Cd, Pb, Fe, and Hg, while Barbula arcuata accumulates Mn, As, and Cu in SP1. Hyophila involuta and Trematodon longicollis accumulate Mn, Cr, Cd, Pb, Fe, Hg, and Zn in SP2. Trematodon ambiguous accumulates Cd, Fe, and Ni, while Fissidens diversifolius accumulates Mn, Cr, Hg, As, Cu, and Zn in SP3. These findings emphasize the necessity of monitoring heavy metal pollution in contaminated zones using moss as a potential bioindicator.
Collapse
Affiliation(s)
- Swayam Prakash Nanda
- Environmental Science, Department of Chemistry, Institute of Technical Education & Research, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Bibhu Prasad Panda
- Environmental Science, Department of Chemistry, Institute of Technical Education & Research, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India
| | - Abanti Pradhan
- Environmental Science, Department of Chemistry, Institute of Technical Education & Research, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Laha T, Gupta N, Pal M, Koley A, Masto RE, Hoque RR, Balachandran S. Chemical speciation and health risk assessment of potentially toxic elements in playground soil of bell metal commercial town of Eastern India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:453. [PMID: 39320529 DOI: 10.1007/s10653-024-02240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Contaminated playground soils can expose players to harmful pollutants, increasing the risk of respiratory, skin, and gastrointestinal issues and potentially impacting long-term health and development. This study investigated the chemical forms and the human health risks associated with potentially toxic elements (PTEs) found in playground soil samples from Khagra, a historic town known for its bell metal industry, located in the Murshidabad district of eastern India. Sequential extraction techniques were employed to analyze the distribution of PTEs such as As, Cd, Co, Cu, Mn, Pb, Ni, Sn, and Zn among different fractions: exchangeable (F1), bound to carbonate phase (F2), bound to iron and manganese oxides (F3), bound to organic matter (F4), and residual (F5). The playground soil showed the highest contamination with Sn, with an IPOLL value of 3.14, indicating moderate to heavy contamination, while Cd, Cu, Mn, Pb, and Zn exhibit moderate contamination. The mean concentration of PTEs in all fractions (F1-F5) follows the order: Fe > Zn > Cu > Mn > Pb > Sn > Ni > Co > As > Cd. The maximum affinity of PTEs and their percentages are as follows: Fe (F5, 80.6%), As (F5, 55.31%), Cd (F5, 48.8), Co (F5, 64.9%), Mn (F3, 44%), Ni (F5, 53.2%), Pb (F3, 44.7%), Zn (F3, -43.19%), Sn (F3, 55%), Cu (F5 -42.18). As, Cd, Co, Cu, Fe, and Ni have a high affinity for F5, indicating geogenic source, while Mn, Pb, Sn, and Zn have a high affinity for F3, indicating anthropogenic source. Fe-Mn oxide partition was dominant for nearly all PTEs due to elevated sorption of cations onto Fe-Mn oxides at high pH. The risk assessment code for Cd, Cu, Mn, Ni, Sn, and Zn in playground soil is categorized under moderate risk, below 30%, while other elements showed no risk. Also, mobility factors were calculated for each PTEs, suggesting the degree of mobility that PTEs can easily migrate and be taken up, absorbed, or adsorbed by the human body. The mobility factor in playground soil was higher for Sn (59.89%) followed by Mn (54.24%) > Pb (52.91%) > Zn (52.01%) > Cd (39.49%) > Ni (33.20%) > As (30.39%) > Co (26.56%) > Cu (21.24%) > Fe (11.20%). Risk hazard quotients for children and adults were found to follow the order: Pb (0.263; 0.040), Cu (0.098; 0.015) > As(0.056; 0.008) > Mn (0.045; 0.009) > Zn(0.36; 0.05) > Cd(0.006; 0.001) > Ni (0.004; 0.001) > Co (0.001; 0.0). PTEs detected in the environment result from atmospheric deposition from small-scale metallurgical industries (bell metal and brass), coal and oil combustion, civil works, municipal waste incineration, and fugitive emissions from road dust. The human non-carcinogenic health risk for PTEs from ingestion and dermal contact was higher than that from inhalation. In the context of carcinogenic risk, As shows the highest health risk of 2.51E-05, followed by Cd (1.02E-09) and Co (8.14E-09). This study uniquely assesses the chemical speciation of PTEs in playground soils, revealing their geogenic and anthropogenic sources, and evaluates associated health risks. Policy intervention is vital for monitoring and remediating PTEs in playgrounds to protect children's health.
Collapse
Affiliation(s)
- Tanmay Laha
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Nitu Gupta
- Department of Environmental Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mousumi Pal
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Apurba Koley
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Reginald Ebin Masto
- Environmental Management Division, CSIR-Central Institute of Mining and Fuel Research (Digwadih Campus), Jharkhand, 828108, India
| | - Raza Rafiqul Hoque
- Department of Environmental Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India.
| |
Collapse
|
9
|
Islam MS, Al Bakky A, Saikat MSM, Antu UB, Akter R, Roy TK, Ismail Z, Ibrahim KA, Idris AM. Toxicity factors, ecological and health risk assessments of heavy metal in the urban soil: a case study of an agro-machinery area in a developing country. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:437. [PMID: 39316128 DOI: 10.1007/s10653-024-02213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
The contribution of heavy metals in surface soils by the influences of agro-machinery factories is a significant growing concern. Heavy metals were analyzed by inductively coupled plasma mass spectrometry technique to assess human and ecological risks. The concentrations of Fe, Cd, Cr, Cu, As, Pb, Mn, Ni, and Zn in soil ranged from 18,274-22,652, 2.06-4.92, 24.8-41.9, 126.8-137.5, 9.20-25.2, 17.8-46.1, 114.4-183.1, 86.9-118.1, and 101.6-159.6 mg/kg, respectively. The enrichment factor values of heavy metals were greater than 1.5, suggesting severe anthropogenic activities such as untreated waste discharging, burning of metallic wastes, wear, and tear, and dismantling of old batteries for heavy metals enrichment in studied soil. The contamination factor indicates considerable to very high contamination of heavy metals in soil. Moderate to high ecological risk was observed for analyzed metals which mainly originated from the maintenance and repairing of various engines in the workshop and welding and soldering of metallic substances. The target hazard quotient (THQ) was ranged from 6.99E-04 to 2.21E-01 for adults and 5.59E-03 to 1.82E + 00 for children, respectively; indicating children were more sensitive to heavy metals exposure from soil dust. The carcinogenic risk of As (1.72E-05) exceeded the USEPA acceptable limits indicating cancer risk to the residence. The current emphasized the significance of intensive heavy metals monitoring in surface soils around the agro-machinery areas due to their potential health risks associated with children.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Abdullah Al Bakky
- Agricultural Wing, Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh.
| | - Md Sadik Mahmud Saikat
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Ruma Akter
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Tusar Kanti Roy
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia.
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Center for Environment and Tourism Studies and Research, King Khalid University, 62529, Abha, Saudi Arabia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia.
| |
Collapse
|
10
|
Huda MN, Harun-Ur-Rashid M, Hosen A, Akter M, Islam MM, Emon SZ, Rahman A, Jashim ZB, Shahrukh S, Ismail M. A potential toxicological risk assessment of heavy metals and pesticides in irrigated rice cultivars near industrial areas of Dhaka, Bangladesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:794. [PMID: 39112821 DOI: 10.1007/s10661-024-12927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Rice intake represents a significant pathway through which humans accumulate heavy metals. This study presents a comprehensive analysis of heavy metal and pesticide contamination in rice cultivars irrigated with industrial wastewater near Dhaka, Bangladesh, a region heavily influenced by industrial activities. This study employed a unique methodology that not only quantified the concentrations of heavy metals and pesticide residues in rice grains but also extended to evaluating the physicochemical properties of rice stems, husks, soil, and irrigation water. The findings revealed alarmingly high levels of heavy metals such as lead, cadmium, chromium, nickel, and mercury in the soil and irrigation water, with concentrations in some cases exceeding the World Health Organization safety thresholds by 2 to 15 times. Notably, the rice grains also exhibited significant contamination, including substantial amounts of diazinon and fenitrothion pesticides, exceeding the established safety limits. The study employed hazard quotients (HQs) and cancer risk (CR) assessments to evaluate the potential health risks associated with the consumption of contaminated rice. The results indicated HQ values were greater than 1 for rice grains across the sampled fields, suggesting a considerable non-carcinogenic health risk, particularly from lead exposure, which was found at levels twice the standard limit in all the sampling fields. Moreover, the CR values for As, Pb, Cd, Co, and Mn highlighted a significant carcinogenic risk in several instances.
Collapse
Affiliation(s)
- Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Sector 10, Uttara Model Town, Dhaka-1230, Bangladesh
| | - Anowar Hosen
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mahafuga Akter
- Clean Energy and Carbon Capture Laboratory, Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sharmin Zaman Emon
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Asma Rahman
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zuairia Binte Jashim
- Department of Soil, Water and Environment, University of Dhaka, Dhaka-1000, Bangladesh
| | - Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad Ismail
- Clean Energy and Carbon Capture Laboratory, Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
11
|
Yang Y, Lu X, Yu B, Wang Z, Wang L, Lei K, Zuo L, Fan P, Liang T. Exploring the environmental risks and seasonal variations of potentially toxic elements (PTEs) in fine road dust in resource-based cities based on Monte Carlo simulation, geo-detector and random forest model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134708. [PMID: 38795490 DOI: 10.1016/j.jhazmat.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The environmental pollution caused by mineral exploitation and energy consumption poses a serious threat to ecological security and human health, particularly in resource-based cities. To address this issue, a comprehensive investigation was conducted on potentially toxic elements (PTEs) in road dust from different seasons to assess the environmental risks and influencing factors faced by Datong City. Multivariate statistical analysis and absolute principal component score were employed for source identification and quantitative allocation. The geo-accumulation index and improved Nemerow index were utilized to evaluate the pollution levels of PTEs. Monte Carlo simulation was employed to assess the ecological-health risks associated with PTEs content and source orientation. Furthermore, geo-detector and random forest analysis were conducted to examine the key environmental variables and driving factors contributing to the spatiotemporal variation in PTEs content. In all PTEs, Cd, Hg, and Zn exhibited higher levels of content, with an average content/background value of 3.65 to 4.91, 2.53 to 3.34, and 2.15 to 2.89 times, respectively. Seasonal disparities were evident in PTEs contents, with average levels generally showing a pattern of spring (winter) > summer (autumn). PTEs in fine road dust (FRD) were primarily influenced by traffic, natural factors, coal-related industrial activities, and metallurgical activities, contributing 14.9-33.9 %, 41.4-47.5 %, 4.4-8.3 %, and 14.2-29.4 % to the total contents, respectively. The overall pollution and ecological risk of PTEs were categorized as moderate and high, respectively, with the winter season exhibiting the most severe conditions, primarily driven by Hg emissions from coal-related industries. Non-carcinogenic risk of PTEs for adults was within the safe limit, yet children still faced a probability of 4.1 %-16.4 % of unacceptable risks, particularly in summer. Carcinogenic risks were evident across all demographics, with children at the highest risk, mainly due to Cr and smelting industrial sources. Geo-detector and random forest model indicated that spatial disparities in prioritized control elements (Cr and Hg) were primarily influenced by particulate matter (PM10) and anthropogenic activities (industrial and socio-economic factors); variations in particulate matter (PM10 and PM2.5) and meteorological factors (wind speed and precipitation) were the primary controllers of seasonal disparities of Cr and Hg.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Okoro HK, Orosun MM, Umar SA, Muzammil K, Ogunkunle CO, Iwuozor KO, Emenike EC, Islam S, Ngila JC, Zvinowanda C. Human and ecological risk assessments of potentially toxic elements in sediments around a pharmaceutical industry. Heliyon 2024; 10:e31685. [PMID: 38841437 PMCID: PMC11152930 DOI: 10.1016/j.heliyon.2024.e31685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Potentially toxic elements (PTEs) in sediment can be highly hazardous to the environment and public health. This study aimed to assess the human and ecological risks of PTEs in sediments around a pharmaceutical industry in Ilorin, Nigeria. Physicochemical parameters and the concentrations of lead (Pb), chromium (Cr), cadmium (Cd), cobalt (Co), arsenic (As), and nickel (Ni) were analyzed in sediment samples collected from seven locations in the wet and dry seasons. Standard two-dimensional principal component analysis (PCA) and risk assessments were also conducted. The concentrations of Pb, Co, Ni, Cr, Cd, and As in the sediments ranged from 0.001 to 0.031 mg/kg, 0-0.005 mg/kg, 0.005-0.012 mg/kg, 0.001-0.014 mg/kg, 0.005-0.024 mg/kg, and 0.001-0.012 mg/kg, respectively. The mean concentrations of the total PTEs content were found in decreasing order of concentration: Pb > Cd > Ni > Cr > As > Co. PCA showed that some of the PTEs were highly concentrated in samples obtained at other locations as well as at the discharge point. The Hazard Index was mostly <1 across locations, indicating little to no probable non-cancerous effect. However, the incremental lifetime cancer risk for arsenic and nickel was high and required attention. The ecological risk assessment showed that lead and arsenic were the major PTEs pollutants in all locations. The study identifies PTEs profiles in sediments and emphasises the necessity of continual monitoring and action to stop long-term negative impacts on the local environment and public health.
Collapse
Affiliation(s)
- Hussein K. Okoro
- Environmental-Analytical & Material Research Group, Department of Industrial Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Muyiwa M. Orosun
- Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Salman A. Umar
- Environmental-Analytical & Material Research Group, Department of Industrial Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | | | - Kingsley O. Iwuozor
- Environmental-Analytical & Material Research Group, Department of Industrial Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Ebuka Chizitere Emenike
- Environmental-Analytical & Material Research Group, Department of Industrial Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Jane C. Ngila
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Caliphs Zvinowanda
- Department of Chemical Sciences, University of Johannesburg, South Africa
| |
Collapse
|
13
|
Kumar S, Saxena A, Srivastava RK, Singh SB, Ram RN, Ganie PA, Posti R, Pandey N. Composition of heavy metals in sediment, water, and fish of the Ganga and Yamuna Rivers in two major cities of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:612. [PMID: 38869675 DOI: 10.1007/s10661-024-12777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The rapid industrial development in the Indian capital region has led to significant waste generation, which, despite undergoing treatment prior to disposal, contributes substantially to water body contamination. Given the diverse nature of these wastes and their potential repercussions across the food chain, a study was conducted to evaluate heavy metal contamination levels in the Ganga and Yamuna Rivers of two major cities. Six heavy metals (Pb, Cd, Hg, Cu, Cr, and Zn) were analyzed in fish, water, and sediment samples by utilizing flame atomic absorption spectrophotometry (Avanta Σ) from March 2019 to February 2020. Results revealed distinct heavy metal distribution patterns, with Cr > Zn > Pb > Cu > Cd > Hg in the Ganga River and Zn > Cr > Pb > Cu > Cd > Hg in the Yamuna River for fish samples. Additionally, levels of Hg in Cyprinus carpio and Sperata oar from the Ganga River, and Pb, Cd, Hg, and Cr in Salmophasia bacaila and Mystus cavasius from the Yamuna River exceeded WHO/FAO permissible limits. In water samples, the predominant heavy metal sequences were Pb > Cu > Zn > Cr > Cd > Hg for the Ganga River and Cr > Zn > Pb > Cu > Cd > Hg for the Yamuna River, with Pb, Cr, Zn, and Cd surpassing WHO standards. Sediment analysis revealed varying heavy metal compositions, with Zn > Cr > Pb > Cu > Cd > Hg in the Ganga River and Cr > Zn > Pb > Cu > Cd > Hg in the Yamuna River. While drinking water and fish from the Ganga River were deemed safe for consumption, those from the Yamuna River were not. Given the toxic nature of heavy metals and their detrimental health impacts, regular monitoring and effective management strategies are imperative.
Collapse
Affiliation(s)
- Sumit Kumar
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India.
| | - Amita Saxena
- Department of Fisheries Resource Management, College of Fisheries, G.B.Pant, University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand, India
| | - Rajeev Kumar Srivastava
- Department of Environmental Sciences, College of Basic Science and Humanities, G.B.Pant, University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand, India
| | - Suraj Bhan Singh
- Department of Mathematics, Statistics and Computer Sciences, College of Basic Science and Humanities, G.B.Pant, University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand, India
| | - Raj Narayan Ram
- Department of Mathematics, Statistics and Computer Sciences, College of Basic Science and Humanities, G.B.Pant, University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand, India
| | - Parvaiz Ahmad Ganie
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Ravindra Posti
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Nityanand Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| |
Collapse
|
14
|
Zhang K, Chang S, Tu X, Wang E, Yu Y, Liu J, Wang L, Fu Q. Heavy metals in centralized drinking water sources of the Yangtze River: A comprehensive study from a basin-wide perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133936. [PMID: 38479139 DOI: 10.1016/j.jhazmat.2024.133936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Water quality in the Yangtze River Basin (YRB) has received considerable attention because it supplies water to 400 million people. However, the trends, sources, and risks associated with heavy metals (HMs) in water of centralized drinking water sources (CDWSs) in the YRB region are not well understood due to the lack of high-frequency, large-scale monitoring data. Moreover, research on the factors affecting the transportation of HMs in natural water are limited, all of which significantly reduce the effectiveness of CDWSs management. Therefore, this study utilized data on 11 HMs and water quality from 114 CDWSs, covering 71 prefecture-level cities (PLC) in 15 provinces (cities), to map unprecedented geospatial distribution of HMs in the YRB region and examine their concentrations in relation to water chemistry parameters. The findings revealed that the frequency of detection (FOD) of 11 HMs ranged from 28.59% (Hg) to 99.64% (Ba). The mean concentrations are ranked as follows: Ba (40.775 μg/L) > B (21.866 μg/L) > Zn (5.133 μg/L) > V (2.668 μg/L) > Cu (2.049 μg/L) > As (1.989 μg/L) > Mo (1.505 μg/L) > Ni (1.108 μg/L) > Sb (0.613 μg/L) > Pb (0.553 μg/L) > Hg (0.002 μg/L). Concentrations of Zn, As, Hg, Pb, Mo, Sb, Ni, and Ba exhibited decreasing trends from 2018 to 2022. Human activities, including industrial and agricultural production, have led to higher pollution levels in the midstream and downstream of the river than in its upstream. Additionally, the high concentrations of Ba and B are influenced by natural geological factors. Anion concentrations and nutrient levels, play a significant role in the transport of HMs in water. Probabilistic health risk assessment indicates that As, Ba, and Sb pose a potential carcinogenic risk. Additionally, non-carcinogenic risk to children under extreme conditions should also be considered.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Enrui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanling Yu
- Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Jianli Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Ullah Z, Zeng XC, Rashid A, Ghani J, Ali A, Shah M, Zainab R, Almutairi MH, Sayed AA, Aleya L. Integrated approach to hydrogeochemical appraisal of groundwater quality concerning arsenic contamination and its suitability analysis for drinking purposes using water quality index. Sci Rep 2023; 13:20455. [PMID: 37993472 PMCID: PMC10665467 DOI: 10.1038/s41598-023-40105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 08/04/2023] [Indexed: 11/24/2023] Open
Abstract
Arsenic (As), contamination in drinking groundwater resources is commonly environmental problem in many developing countries including Pakistan, with significant human health risk reports. In order to examine the groundwater quality concerning As contamination, its geochemical behavior along with physicochemical parameters, 42 samples were collected from community tube wells from District Bahawalpur, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and associated public health risk. The As concentration detected in groundwater samples varied from 0.12 to 104 µg/L with an average value of 34.7 µg/L. Among 42 groundwater samples, 27 samples were beyond the permitted limit of 10 µg/L recommended by World Health Organization (WHO), for drinking purposes. Statistical analysis result show that the groundwater cations values are in decreasing order such as: Na+ > Mg2+ > Ca2+ > K+, while anions were HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies result depict that the groundwater samples of the study area, 14 samples belong to CaHCO3 type, 5 samples belong to NaCl type, 20 samples belong to Mixed CaMgCl type, and 3 samples belong to CaCl2 type. It can be accredited due to weathering and recharge mechanism, evaporation processes, and reverse ion exchange. Gibbs diagram shows that rock water interaction controls the hydrochemistry of groundwater resources of the study area. Saturation Index (SI) result indicated the saturation of calcite, dolomite, gypsum, geothite, and hematite mineral due their positive SI values. The principal component analysis (PCA) results possess a total variability of 80.69% signifying the anthropogenic and geogenic source of contamination. The results of the exposure-health-risk-assessment method for measuring As reveal significant potential non-carcinogenic risk (HQ), exceeding the threshold level of (> 1) for children in the study area. Water quality assessment results shows that 24 samples were not suitable for drinking purposes.
Collapse
Affiliation(s)
- Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Junaid Ghani
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Asmat Ali
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University, Mardan, 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Rimsha Zainab
- Department of Botany, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, 25030, Besancon, France
| |
Collapse
|
16
|
Laishram RJ, Singh TB, Alam W. A comprehensive health risk assessment associated with bioaccumulation of heavy metals and nutrients in selected macrophytes of Loktak Lake, Manipur, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105329-105352. [PMID: 37713085 DOI: 10.1007/s11356-023-29606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
The Loktak Lake, a Ramsar site in Northeast India, is known for its rich biodiversity that includes a variety of macrophyte species, most of which have not been studied for their phytoremediation capacities and potential toxicity via consumption of the edible species. Therefore, a comprehensive assessment was conducted to evaluate the accumulation of selected heavy metals and nutrients in 10 dominant macrophyte species growing in Loktak Lake and to assess the potential health risks associated with consumption of the edible plants. The concentrations of nutrients such as total phosphorus (TP), total nitrogen (TN), potassium (K), calcium (Ca), magnesium (Mg), and heavy metals such as copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) were found to be in the order of plant > sediment > water. The bioaccumulation factors (BAFs) revealed high efficiency of most plants to accumulate heavy metals and nutrients in their tissues from the lake water and sediments, indicating their potential to be used as phytoremediators. Translocation factors (TFs) were also estimated to determine the efficiency of the plants to translocate elements from root to shoot. Colocasia esculenta and Polygonum perfoliatum exhibited the highest BAF values, whereas Colocasia esculenta, Hedychium flavum, Phragmites karka, and Oenanthe javanica exhibited the highest TF values for most elements. Target hazard quotients (THQs) revealed potential health risks associated with one or more heavy metals in the plants, except for Zn, whose THQ values were below the level of concern in all the edible plant species. The hazard index (HI) signifying potential non-carcinogenic health risk from the combined effects of all the heavy metals was highest for Polygonum perfoliatum, indicating a potentially higher risk to health if this edible macrophyte is regularly consumed in higher quantities and may pose long-term health effects to the exposed population.
Collapse
Affiliation(s)
- Ranu Jajo Laishram
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India
| | - Tensubam Basanta Singh
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region (ICAR RC NEH), Manipur Centre, Lamphelpat, Imphal, 795004, Manipur, India
| | - Wazir Alam
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India.
| |
Collapse
|
17
|
Batool M, Toqeer M, Shah MH. Assessment of water quality, trace metal pollution, source apportionment and health risks in the groundwater of Chakwal, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01501-2. [PMID: 36786960 DOI: 10.1007/s10653-023-01501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Groundwater quality evaluation is the main concern in the regions like Chakwal where it is major source of water for drinking and irrigation due to low storage capacity of the surface water and lack of proper irrigation system. The aim of the present study was to evaluate various physicochemical parameters (pH, EC, TDS, DO, TA, TH and chlorides) and selected essential/toxic trace metal concentrations (Na, K, Ca, Mg, Sr, Li, Ag, Zn, Fe, Cu, Co, Mn, Cr, Cd, and Pb) in order to explore their distribution, correlation, spatial variations and health risk assessment. Average concentration of some trace metals (Co, Cd and Pb) and physicochemical parameters (EC, TDS, and alkalinity) were found to exceed the national/international standards. Multivariate methods of analysis showed strong associations among Fe-Li-K, Sr-Mg-Ca, Cd-Mn, Cu-Zn, Ag-Co, and Cr-Pb-Na which were significantly contributed by anthropogenic activities. Irrigation water quality index exhibited intermediate suitability of the groundwater for irrigation purpose. Health risk evaluation of the trace metals revealed significant non-carcinogenic risks for Cd, Co and Pb (HQing > 1) especially for children. Similarly, significant carcinogenic risk was found to be associated with Pb and Cr which exceeded the safe limit, suggesting the lifetime carcinogenic risk associated with these metals in the groundwater. The present health risk problems should be considered on top priority and immediate actions should be taken to safeguard the water quality in the study area.
Collapse
Affiliation(s)
- Maryam Batool
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Toqeer
- Department of Earth Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|