1
|
Zeng X, Li C, Li Z, Tao Z, Li M. Review of research advances in microbial sterilization technologies and applications in the built environment. J Environ Sci (China) 2025; 154:314-348. [PMID: 40049877 DOI: 10.1016/j.jes.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 05/13/2025]
Abstract
As globalization accelerates, microbial contamination in the built environment poses a major public health challenge. Especially since Corona Virus Disease 2019 (COVID-19), microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment. Based on this, the study reviews sterilization technologies in the built environment, focusing on the principles, efficiency and applicability, revealing advantages and limitations, and summarizing current research advances. Despite the efficacy of single sterilization technologies in specific environments, the corresponding side effects still exist. Thus, this review highlights the efficiency of hybrid sterilization technologies, providing an in-depth understanding of the practical application in the built environment. Also, it presents an outlook on the future direction of sterilization technology, including the development of new methods that are more efficient, energy-saving, and targeted to better address microbial contamination in the complex and changing built environment. Overall, this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future, as well as a scientific basis for developing more effective air quality control strategies.
Collapse
Affiliation(s)
- Xinran Zeng
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China
| | - Chunhui Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhenhai Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhizheng Tao
- SWJTU-Leeds Joint School, Southwest Jiaotong University, Chengdu 610097, China
| | - Mingtong Li
- School of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
2
|
Shambhavi S, Kim H, Jahanzaib M, Lee J, Park D. BT100, a three-in-one, multipurpose disinfecting, deodorizing, and air-cleaning solution with an effective, gradual, and continuous gaseous chlorine dioxide-releasing substance. Heliyon 2024; 10:e26738. [PMID: 38449591 PMCID: PMC10915389 DOI: 10.1016/j.heliyon.2024.e26738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Aerosols carrying viruses that are released from the oral cavity of infected individuals are the primary, if not the only, means of transmission during viral respiratory disease epidemics. This makes crowded rooms and tiny, enclosed public areas like bathrooms prime environments for the transmission of diseases. Volatile organic compounds (VOCs) and formaldehyde are two contaminants that pose serious threats to human health and well-being in indoor environments. The varied disinfectant properties of chlorine dioxide (ClO2) make it a key player in treating a range of air quality issues. To balance effectiveness and safety, however, the careful application of chlorine dioxide is essential to achieving the best results in air quality while preserving human health and well-being. This study explores the many functions of chlorine dioxide, including the prevention of the spread of viruses, the elimination of harmful gases like ammonia and hydrogen sulfide, and its effects on formaldehyde and total volatile organic compounds (TVOCs) in indoor environments using BT100. The results indicate a reduction of 98.5%, 81.01%, 62.22%, 46.5%, and 63.84% in minimizing aerosolized viruses, ammonia, and hydrogen sulfide gas in addition to formaldehyde and total volatile organic compounds.
Collapse
Affiliation(s)
- Sharma Shambhavi
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Honggil Kim
- Sejin E & P Co. Ltd., Anyang-Si, Gyeonggi-do, Republic of Korea
| | - Muhammad Jahanzaib
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jooyeon Lee
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Duckshin Park
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|