1
|
Liu P, Sablon O, Wang Y, Hilton SP, Khalil L, Ingersoll JM, Truell J, Edupuganti S, Alaaeddine G, Naji A, Monarrez E, Wolfe M, Rouphael N, Kraft C, Moe CL. Longitudinal fecal shedding of SARS-CoV-2, pepper mild mottle virus, and human mitochondrial DNA in COVID-19 patients. Front Med (Lausanne) 2024; 11:1417967. [PMID: 39323476 PMCID: PMC11423543 DOI: 10.3389/fmed.2024.1417967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Since the coronavirus disease 2019 (COVID-19) pandemic, wastewater-based epidemiology (WBE) has been widely applied in many countries and regions for monitoring COVID-19 transmission in the population through testing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. However, the amount of virus shed by individuals over time based on the stage of infection and accurate number of infections in the community creates challenges in predicting COVID-19 prevalence in the population and interpreting WBE results. In this study, we measured SARS-CoV-2, pepper mild mottle virus (PMMoV), and human mitochondrial DNA (mtDNA) in longitudinal fecal samples collected from 42 COVID-19 patients for up to 42 days after diagnosis. SARS-CoV-2 RNA was detected in 73.1% (19/26) of inpatient study participants in at least one of the collected fecal specimens during the sampling period. Most participants shed the virus within 3 weeks after diagnosis, but five inpatient participants still shed the virus between 20 and 60 days after diagnosis. The median concentration of SARS-CoV-2 in positive fecal samples was 1.08 × 105 genome copies (GC)/gram dry fecal material. PMMoV and mtDNA were detected in 99.4% (154/155) and 100% (155/155) of all fecal samples, respectively. The median concentrations of PMMoV RNA and mtDNA in fecal samples were 1.73 × 107 and 2.49 × 108 GC/dry gram, respectively. These results provide important information about the dynamics of fecal shedding of SARS-CoV-2 and two human fecal indicators in COVID-19 patients. mtDNA showed higher positive rates, higher concentrations, and less variability between and within individuals than PMMoV, suggesting that mtDNA could be a better normalization factor for WBE results than PMMoV.
Collapse
Affiliation(s)
- Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Orlando Sablon
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Stephen Patrick Hilton
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Lana Khalil
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jessica Mae Ingersoll
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Truell
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Sri Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ghina Alaaeddine
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Amal Naji
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Eduardo Monarrez
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Marlene Wolfe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Colleen Kraft
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Christine L. Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Ribeiro AVC, Mannarino CF, Novo SPC, Prado T, Lermontov A, de Paula BB, Fumian TM, Miagostovich MP. Assessment of crAssphage as a biological variable for SARS-CoV-2 data normalization in wastewater surveillance. J Appl Microbiol 2024; 135:lxae177. [PMID: 39013607 DOI: 10.1093/jambio/lxae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
AIMS This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Shênia Patrícia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Respiratory, Exanthematic, Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - André Lermontov
- Chemical and Biochemical Process Technology, School of Chemistry/Federal University of Rio de Janeiro - EQ/UFRJ, Rio de Janeiro 21941-909, Brazil
| | - Bruna Barbosa de Paula
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Krogsgaard LW, Benedetti G, Gudde A, Richter SR, Rasmussen LD, Midgley SE, Qvesel AG, Nauta M, Bahrenscheer NS, von Kappelgaard L, McManus O, Hansen NC, Pedersen JB, Haimes D, Gamst J, Nørgaard LS, Jørgensen ACU, Ejegod DM, Møller SS, Clauson-Kaas J, Knudsen IM, Franck KT, Ethelberg S. Results from the SARS-CoV-2 wastewater-based surveillance system in Denmark, July 2021 to June 2022. WATER RESEARCH 2024; 252:121223. [PMID: 38310802 DOI: 10.1016/j.watres.2024.121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/01/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
The microbiological analysis of wastewater samples is increasingly used for the surveillance of SARS-CoV-2 globally. We described the setup process of the national SARS-CoV-2 wastewater-based surveillance system in Denmark, presented its main results during the first year of activities, from July 2021 to June 2022, and discussed their operational significance. The Danish SARS-CoV-2 wastewater-based surveillance system was designed to cover 85 % of the population in Denmark and it entailed taking three weekly samples from 230 sites. Samples were RT-qPCR tested for SARS-CoV-2 RNA, targeting the genetic markers N1, N2 and RdRp, and for two faecal indicators, Pepper Mild Mottle Virus and crAssphage. We calculated the weekly SARS-CoV-2 RNA concentration in the wastewater from each sampling site and monitored it in view of the results from individual testing, at the national and regional levels. We attempted to use wastewater results to identify potential local outbreaks, and we sequenced positive wastewater samples using Nanopore sequencing to monitor the circulation of viral variants in Denmark. The system reached its full implementation by October 2021 and covered up to 86.4 % of the Danish population. The system allowed for monitoring of the national and regional trends of SARS-CoV-2 infections in Denmark. However, the system contribution to the identification of potential local outbreaks was limited by the extensive information available from clinical testing. The sequencing of wastewater samples identified relevant variants of concern, in line with results from sequencing of human samples. Amidst the COVID-19 pandemic, Denmark implemented a nationwide SARS-CoV-2 wastewater-based surveillance system that integrated routine surveillance from individual testing. Today, while testing for COVID-19 at the community level has been discontinued, the system is on the frontline to monitor the occurrence and spread of SARS-CoV-2 in Denmark.
Collapse
Affiliation(s)
- Lene Wulff Krogsgaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Guido Benedetti
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark.
| | - Aina Gudde
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Stine Raith Richter
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Amanda Gammelby Qvesel
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Maarten Nauta
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Naja Stolberg Bahrenscheer
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Lene von Kappelgaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Oliver McManus
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Gustav III: s Boulevard 40, 16973 Solna, Sweden
| | - Nicco Claudio Hansen
- Test Centre Denmark, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Jan Bryla Pedersen
- Department of Finance, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Danny Haimes
- Danish Patient Safety Authority, Islands Brygge 67, 2300 Copenhagen, Denmark
| | - Jesper Gamst
- Eurofins Environment, Ladelundvej 85, 6600 Vejen, Denmark
| | | | | | | | | | - Jes Clauson-Kaas
- HOFOR - Greater Copenhagen Utility, Ørestads Boulevard 35, 2300 Copenhagen, Denmark
| | - Ida Marie Knudsen
- HOFOR - Greater Copenhagen Utility, Ørestads Boulevard 35, 2300 Copenhagen, Denmark
| | - Kristina Træholt Franck
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Public Health, Global Health Section, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| |
Collapse
|