1
|
Liu Q, Li Y, Sun Y, Xie K, Zeng Q, Hao Y, Yang Q, Pu Y, Shi S, Gong Z. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167544. [PMID: 37797771 DOI: 10.1016/j.scitotenv.2023.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
With the continuous increase in microplastics (MPs) and tetracycline (TC) entering wastewater treatment plants (WWTPs) along with sewage, the co-existence of MPs and TC in the biological treatment of wastewater has attracted extensive attention. This study investigated the effect of 1 mg/L polyvinyl chloride (PVC) MPs and 100 ng/L TC co-existing on sequencing batch reactors (SBRs) (S2) treating phenol wastewater in contrast to the control with TC alone (S1). The phenol removal efficiency was significantly inhibited by the co-existence of PVC MPs and TC. Sludge characteristics were also distinctively influenced. The decreased zone sludge velocity (ZSV) and increased sludge volume index (SVI) indicated that the combined effect of PVC MPs and TC deteriorated sludge settleability, which had positive and negative linear correlations with extracellular polymeric substances (EPS) content and the protein (PN)/polysaccharide (PS) ratio, respectively. Moreover, the decreased and increased relative abundances of potential phenol-degraders and antibiotic resistance gene (ARG) carriers may elucidate the inhibition of phenol removal and promotion of ARGs propagation with the co-occurrence of PVC MPs and TC. In addition, the enhanced potential ARGs hosts, loss of the EPS protective effect, and increased membrane permeability induced by reactive oxygen species (ROS) jointly promoted ARGs dissemination in the co-existence of PVC MPs and TC. Notably, the co-occurrence of ARGs and mobile genetic element (MGEs) indicated that the co-existence of PVC MPs and TC promoted the spread of some transposase-associated ARGs mediated by horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Qiangwei Liu
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Kunpeng Xie
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China..
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China..
| |
Collapse
|
2
|
Singh S, Bharadwaj T, Verma D, Dutta K. Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564 T. CHEMOSPHERE 2022; 308:136269. [PMID: 36057352 DOI: 10.1016/j.chemosphere.2022.136269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Phenol is one of the most common hazardous organic compound presents in several industrial effluents which directly affects the aquatic environment. The present study envisaged the phenol biodegradation and simultaneous lipid production along with its underlying mechanism by oleaginous yeast Rhodosporidium toruloides 9564T. Experiments were designed using simulated wastewater by varying phenol concentration in the range of 0.25-1.5 g/L and inoculum size of 1, 5, and 10% with and without glucose. The oleaginous yeast was found to completely degrade up to 0.75 g/L phenol with lipid accumulation of 26.3%. Phenol at > 0.5 g/L severely inhibited the growth of R. toruloides 9564T at 1% and 5% inoculum size. Phenol toxicity up to 0.75 g/L can be overcome by increasing inoculum size to 10%. The maximum specific growth rate (μmax) and phenol degradation rate (qmax) were found to be 0.0717 h-1 and 0.01523 h-1, respectively. The enzymatic pathway study suggested that R. toruloides 9564T follows an ortho cleavage pathway for phenol degradation and lipid accumulation. Phytotoxicty and cytotoxicity tests for treated and untreated samples clearly demonstrated a decline in toxicity of the treated wastewater. R. toruloides brought about an important paradigm shift toward a circular economy in which industrial wastewater is considered a valuable resource for bioenergy production.
Collapse
Affiliation(s)
- Sangeeta Singh
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Liu Y, Xu L, Zhang Z, Huang Z, Fang D, Zheng X, Yang Z, Lu M. Isolation, Identification, and Analysis of Potential Functions of Culturable Bacteria Associated with an Invasive Gall Wasp, Leptocybe invasa. MICROBIAL ECOLOGY 2022; 83:151-166. [PMID: 33758980 DOI: 10.1007/s00248-021-01715-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/07/2021] [Indexed: 05/17/2023]
Abstract
Symbioses between invasive insects and bacteria are one of the key drivers of insect invasion success. Gall-inducing insects stimulate host plants to produce galls, which affects the normal growth of plants. Leptocybe invasa Fisher et La Salle, an invasive gall-inducing wasp, mainly damages Eucalyptus plantations in Southern China, but little is known about its associated bacteria. The aim of this study was to assess the diversity of bacterial communities at different developmental stages of L. invasa and to identify possible ecological functions of the associated bacteria. Bacteria associated with L. invasa were isolated using culture-dependent methods and their taxonomic statuses were determined by sequencing the 16S rRNA gene. A total of 88 species belonging to four phyla, 27 families, and 44 genera were identified by phylogenetic analysis. The four phyla were Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, mainly from the genera Pantoea, Enterobacter, Pseudomonas, Bacillus, Acinetobacter, Curtobacterium, Sphingobium, Klebsiella, and Rhizobium. Among them, 72 species were isolated in the insect gall stage and 46 species were isolated from the adult stage. The most abundant bacterial species were γ-Proteobacteria. We found significant differences in total bacterial counts and community compositions at different developmental stages, and identified possible ecological roles of L. invasa-associated bacteria. This study is the first to systematically investigate the associated bacteria of L. invasa using culture-dependent methods, and provides a reference for other gall-inducing insects and associated bacteria.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhouqiong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zongyou Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Dongxue Fang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Zhende Yang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Tomei MC, Mosca Angelucci D, Clagnan E, Brusetti L. Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 2021; 105:2195-2224. [PMID: 33630152 DOI: 10.1007/s00253-021-11182-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
Anaerobic biodegradation of toxic compounds found in industrial wastewater is an attractive solution allowing the recovery of energy and resources but it is still challenging due to the low kinetics making the anaerobic process not competitive against the aerobic one. In this review, we summarise the present state of knowledge on the anaerobic biodegradation process for phenol, a typical target compound employed in toxicity studies on industrial wastewater treatment. The objective of this article is to provide an overview on the microbiological and technological aspects of anaerobic phenol degradation and on the research needs to fill the gaps still hindering the diffusion of the anaerobic process. The first part is focused on the microbiology and extensively presents and characterises phenol-degrading bacteria and biodegradation pathways. In the second part, dedicated to process feasibility, anaerobic and aerobic biodegradation kinetics are analysed and compared, and strategies to enhance process performance, i.e. advanced technologies, bioaugmentation, and biostimulation, are critically analysed and discussed. The final section provides a summary of the research needs. Literature data analysis shows the feasibility of anaerobic phenol biodegradation at laboratory and pilot scale, but there is still a consistent gap between achieved aerobic and anaerobic performance. This is why current research demand is mainly related to the development and optimisation of powerful technologies and effective operation strategies able to enhance the competitiveness of the anaerobic process. Research efforts are strongly justified because the anaerobic process is a step forward to a more sustainable approach in wastewater treatment.Key points• Review of phenol-degraders bacteria and biodegradation pathways.• Anaerobic phenol biodegradation kinetics for metabolic and co-metabolic processes.• Microbial and technological strategies to enhance process performance.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy
| | - Elisa Clagnan
- Ricicla Group - DiSAA, University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen - Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
5
|
Zhao T, Gao Y, Yu T, Zhang Y, Zhang Z, Zhang L, Zhang L. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111709. [PMID: 33396040 DOI: 10.1016/j.ecoenv.2020.111709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
A novel phenol-degrading strain was isolated and identified as Rhodococcus ruber C1. The degradation analysis shows that 1806 mg/L of phenol can be completely degraded by strain C1 within 38 h, and the maximum specific growth rate (μmax=1.527 h-1) and maximum specific phenol degradation rate (qmax=3.674 h-1) indicate its excellent phenol metabolism capability. More importantly, phenol can be degraded by strain C1 in the temperature range of 20-45 °C within 72 h, and with longer degradation time, phenol can be completely degraded even at 10, 15 and 50 °C. The whole genome of strain C1 was sequenced, and a comparative genome analysis of strain C1 with 36 other genomes of Rhodococcus was performed. A remarkable gene family expansion occurred during the evolution of Rhodococcus, and a comprehensive evolutionary picture of Rhodococcus at genomic level was presented. Moreover, the copy number of genes involved in phenol metabolism was compared among genus Rhodococcus, and the results demonstrate high phenol degradation capability of strain C1 at genomic level. These findings suggest that Rhodococcus ruber C1 is a bacterium capable of degrading phenol efficiently in the temperature range of 10-50 °C.
Collapse
Affiliation(s)
- Tiantao Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yanhui Gao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantian Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunru Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhengyi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Wang L, Li Y, Niu L, Zhang W, Li J, Yang N. Experimental studies and kinetic modeling of the growth of phenol-degrading bacteria in turbulent fluids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22711-22720. [PMID: 27557974 DOI: 10.1007/s11356-016-7460-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Understanding the interaction between microorganisms and fluid dynamics is important for aquatic ecosystems, though only sporadic attention has been focused on this topic in the past. In this study, particular attention was paid to the phenol-degrading bacterial strains Microbacterium oxydans LY1 and Alcaligenes faecalis LY2 subjected to controlled fluid flow under laboratory conditions. These two strains were found to be able to degrade phenols over a concentration range from 50 to 500 mg/L under different turbulence conditions ranging from 0 to 250 rpm. The time it took to reach total phenol degradation decreased when the turbulence was increased in both strains, with increasing energy dissipation rates ranging from 0.110 to 6.241 W/kg, corresponding to changes in the bacterial diffusive sublayer thickness (δ) and enhanced oxygen uptake. Moreover, the maximum specific growth rates of the two strains also increased with the enhancement of turbulence. A model integrating growth inhibition and fluid motion was proposed based on the self-inhibition Haldane model by introducing a turbulence parameter, α. The resulting modified Haldane model was designed to include fluid motion as a variable in the quantification of the physiological responses of microorganisms. This modified Haldane model could be considered a useful laboratory reference when modeling procedures for water environment bioremediation. Graphical abstract Cell nutrition uptake cartoon schematic diagram for M. oxydans LY1 under different turbulent condition (50 and 200 rpm).
Collapse
Affiliation(s)
- Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Jie Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| |
Collapse
|