1
|
Moreira MH, They NH, Rodrigues LR, Alvarenga-Lucius L, Pita-Barbosa A. Salty freshwater macrophytes: the effects of salinization in freshwaters upon non-halophyte aquatic plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159608. [PMID: 36280080 DOI: 10.1016/j.scitotenv.2022.159608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Salinization is a threat that affects aquatic ecosystems worldwide. As primary producers, freshwater macrophytes are of paramount importance in these ecosystems, however, information regarding the potential impacts of salinization upon these organisms is still scarce. In this review we provide a comprehensive and updated discussion of how freshwater macrophytes deal with salinity increase in freshwaters. We reviewed the salinity tolerance of widespread non-halophyte macrophytes through an overview of salinity tolerance mechanisms, their tolerance classification, and salinity effects at different levels of organization: from individuals to ecosystems. Thus, we demonstrated that widespread macrophytes that inhabit freshwaters display efficient salinity tolerance to salinity levels between 5 and 10 g L-1, and only a few species display tolerance to salinities higher than 10 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Emergent, floating and submerged species showed no significant difference in salinity tolerance. Salinity stress symptoms in freshwater macrophytes are somewhat similar to those of terrestrial plants and can show up even at slight salinity increases. Salinities higher than 1 g L-1 can negatively affect both physiology and diversity of non-halophyte macrophytes and cause long-term - and not well understood - changes in freshwater ecosystems. Salinization of freshwater ecosystems, among others threats, in combination with climate change, raise concerns about the future ecological status of freshwater ecosystems and the services they can provide.
Collapse
Affiliation(s)
- Mauricio Hoffmann Moreira
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Ng Haig They
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil
| | - Lúcia Ribeiro Rodrigues
- Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande Do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Luna Alvarenga-Lucius
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock D-18059, Germany
| | - Alice Pita-Barbosa
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil.
| |
Collapse
|
2
|
Colares GS, Dell'Osbel N, Wiesel PG, Oliveira GA, Lemos PHZ, da Silva FP, Lutterbeck CA, Kist LT, Machado ÊL. Floating treatment wetlands: A review and bibliometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136776. [PMID: 31991269 DOI: 10.1016/j.scitotenv.2020.136776] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 05/28/2023]
Abstract
Floating treatment wetlands (FTWs) have attained tremendous popularity for water purification purposes. Through this phyto-technology, naturally occurring macrophytes are allowed to grow on the water surface on a buoyant raft or a rigid support, keeping the plant roots permanently in contact with the water and removing pollutants via several processes. The objective of this study was to review studies that have developed FTWs and to perform a bibliometric analysis using three keywords: "Floating", "Treatment" and "Wetlands". From bibliometric analysis using VOSviewer software and the Web of Science database, it was possible to verify the number of publications over the years and the countries and authors with the most published articles on these systems and other related terms. Subsequently, a review was performed on the main mechanisms of pollutant removal by FTWs as well as experiences and recommendations for major design and operating aspects for their application, such as water depth, hydraulic retention time (HRT), floating mat, water surface coverage, artificial aeration, plant selection and pruning or harvesting. It was verified that FTWs are a potential technology for treating several wastewater types and water remediation under different conditions. Even with the increasing number of publications in recent years, many design and operation aspects related to system performance still demand more research in order to better understand the relations between macrophytes and other pollutant removal mechanisms and to thereby improve the treatment efficiency of FTW systems.
Collapse
Affiliation(s)
- Gustavo S Colares
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Naira Dell'Osbel
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Patrik G Wiesel
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Gislayne A Oliveira
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Av, Bento Gonçalves, 91501-970 Porto Alegre, RS, Brazil
| | - Pedro Henrique Z Lemos
- Industrial Chemistry Program, Chemistry Department, University of Santa Cruz do Sul, RS, Brazil
| | - Fagner P da Silva
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Carlos A Lutterbeck
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Lourdes T Kist
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Ênio L Machado
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil.
| |
Collapse
|