1
|
Zhang P, Yang M, Lan J, Huang Y, Zhang J, Huang S, Yang Y, Ru J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. TOXICS 2023; 11:828. [PMID: 37888679 PMCID: PMC10611083 DOI: 10.3390/toxics11100828] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Water quality depends on its physicochemical and biological parameters. Changes in parameters such as pH, temperature, and essential and non-essential trace metals in water can render it unfit for human use. Moreover, the characteristics of the local environment, geological processes, geochemistry, and hydrological properties of water sources also affect water quality. Generally, groundwater is utilized for drinking purposes all over the globe. The surface is also utilized for human use and industrial purposes. There are several natural and anthropogenic activities responsible for the heavy metal contamination of water. Industrial sources, including coal washery, steel industry, food processing industry, plastic processing, metallic work, leather tanning, etc., are responsible for heavy metal contamination in water. Domestic and agricultural waste is also responsible for hazardous metallic contamination in water. Contaminated water with heavy metal ions like Cr (VI), Cd (II), Pb (II), As (V and III), Hg (II), Ni (II), and Cu (II) is responsible for several health issues in humans, like liver failure, kidney damage, gastric and skin cancer, mental disorders and harmful effects on the reproductive system. Hence, the evaluation of heavy metal contamination in water and its removal is needed. There are several physicochemical methods that are available for the removal of heavy metals from water, but these methods are expensive and generate large amounts of secondary pollutants. Biological methods are considered cost-effective and eco-friendly methods for the remediation of metallic contaminants from water. In this review, we focused on water contamination with toxic heavy metals and their toxicity and eco-friendly bioremediation approaches.
Collapse
Affiliation(s)
- Peng Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Mingjie Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jingjing Lan
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yan Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Jinxi Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Shuangshuang Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yashi Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Junjie Ru
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| |
Collapse
|
2
|
Rani S, Sharma S, Bansal M, Garg R, Garg R. Enhanced Zn(II) adsorption by chemically modified sawdust based biosorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99046-99061. [PMID: 36083367 DOI: 10.1007/s11356-022-22963-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals present in industrial effluents, when discharged into water channels, not only affect humans but also negatively impact plants and aquatic organisms. Sawdust is available readily in developing countries and can be used by small-scale industries for effluent water treatment containing low concentrations of bivalent zinc ions. This study explores the potential of sawdust-derived biosorbents, after boiling (SDB), chemical modification with formaldehyde (SDF), and sulfuric acid (SDS), for sequestration of Zn(II) from simulated wastewater as well as industrial effluents. The morphological analysis of the three biosorbents indicated a suitable porous structure with a pore size of 232.928 m2/g (SDB), 291.102 m2/g (SDF), and 498.873 m2/g (SDS). The functional analysis of native and metal-laden biosorbents indicated the role of - OH, - C = O, and - NH functional groups in Zn(II) binding. The process parameters were optimized and the spontaneous adsorption of Zn(II) was found to proceed by multilayer formation by following pseudo-second-order kinetics. SDS adsorbent (0.1 g) exhibited a greater potential for removal of Zn(II) from industrial effluents as compared to SDB and SDF at pH = 6.0 with the equilibrium adsorption capacity of 45.87 mg/g. Therefore, SDS could be a promising adsorbent for the treatment of wastewater in small-scale industries.
Collapse
Affiliation(s)
- Savita Rani
- Yadavindra Department of Sciences, PUGKC, Talwandi Sabo, (Punjab), 151302, India
| | - Seema Sharma
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, (Punjab), 151001, India
| | - Manjeet Bansal
- Department of Civil Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathinda, (Punjab), 151001, India.
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rajni Garg
- R&D Department, Institute of Sci-Tech Affairs, Mohali, Punjab, 140301, India.
| |
Collapse
|
3
|
Glarakis J, Remmas N, Azis K, Melidis P. Retrofitting a full-scale multistage landfill leachate treatment plant by introducing coagulation/flocculation/sedimentation and ultrafiltration process steps. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:326. [PMID: 36692638 DOI: 10.1007/s10661-023-10939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Considering that landfilling still remains among the most commonly used methods for the confrontation of solid wastes, effective methods should be applied to treat the leachate generated, due to its recalcitrant nature. In this work, a full-scale system consisting of two SBRs operating in parallel (350 m3 each) and two activated carbon (AC) columns operating in series (3 m3 each) was retrofitted by introducing a coagulation/flocculation/sedimentation (C/F/S) unit of 7.8 m3 and an ultrafiltration (UF) membrane of 100 m2 to effectively treat landfill leachate. The raw leachate was characterized by high COD and NH4+-N concentration, i.e., 3095 ± 706 mg/L and 1054 ± 141 mg/L respectively, a BOD/COD ratio of 0.22, and high concentrations of certain heavy metals. Leachate processing in this retrofitted multistage treatment system resulted in total COD removal efficiency of 89.84%, with biological treatment, C/F, UF, and AC contributing 46.31%, 4.68%, 15.98%, and 22.87% to the overall organic content removal. The retrofitted scheme achieved an overall NH4+-N and TKN removal of 92.03% and 91.75% respectively, attributed mostly to the activity of an effective nitrifying community. Color number (CN) was reduced by 26.96%, 10.29%, 15.94%, and 5.39% after the activated sludge, the C/F, the UF, and the AC adsorption process respectively, corresponding to a 58.91% overall decrease. Regarding heavy metal removal, all elements examined, apart from Ni, i.e., effluent As, Cd, Co, Cr, Cu, Hg, Mg, Mn, and Pb, were below the legislative limits set by the national authorities for restricted or unrestricted irrigation. Lastly, total operating expenses (OPEX) were estimated as equal to 72,687 €/year or 6.64 €/m3.
Collapse
Affiliation(s)
- John Glarakis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Konstantinos Azis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece.
| |
Collapse
|
4
|
Lin X, Ma Y, Chen T, Wang L, Takaoka M, Pan S, Zhang H, Wu A, Li X, Yan J. PCDD/Fs and heavy metals in the vicinity of landfill used for MSWI fly ash disposal: Pollutant distribution and environmental impact assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120083. [PMID: 36064061 DOI: 10.1016/j.envpol.2022.120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
This study focused on the syngenetic control of polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/Fs) and heavy metals by field stabilization/solidification (S/S) treatment for municipal solid waste incineration fly ash (MSWIFA) and multi-step leachate treatment. Modified European Community Bureau of Reference (BCR) speciation analysis and risk assessment code (RAC) revealed the medium environment risk of Cd and Mn, indicating the necessity of S/S treatment for MSWIFA. S/S treatment significantly declined the mass/toxic concentrations of PCDD/Fs (i.e., from 7.21 to 4.25 μg/kg; from 0.32 to 0.20 μg I-TEQ/kg) and heavy metals in MSWIFA due to chemical fixation and dilution effect. The S/S mechanism of sodium dimethyldithiocarbamate (SDD) and cement was decreasing heavy metals in the mild acid-soluble fraction to reduce their mobility and bioavailability. Oxidation treatment of leachate reduced the PCDD/F concentration from 49.10 to 28.71 pg/L (i.e., from 1.60 to 0.98 pg I-TEQ/L) by suspension absorption or NaClO oxidation decomposition, whereas a so-called "memory effect" phenomena in the subsequent procedures (adsorption, press filtration, flocculating settling, slurry separation, and carbon filtration) increased it back to 38.60 pg/L (1.66 pg I-TEQ/L). Moreover, the multi-step leachate treatment also effectively reduced the concentrations of heavy metals to 1-4 orders of magnitude lower than the national emission standards. Furthermore, the PCDD/Fs and heavy metals in other multiple media (soil, landfill leachate, groundwater, and river water) and their spatial distribution characteristics site were also investigated. No evidence showed any influence of the landfill on the surrounding liquid media. The slightly higher concentration of PCDD/Fs in the soil samples was ascribed to other waste management processes (transportation and unloading) or other local source (hazardous incineration plant). Therefore, proper management of landfills and leachate has a negligible effect on the surrounding environment.
Collapse
Affiliation(s)
- Xiaoqing Lin
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yunfeng Ma
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tong Chen
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lei Wang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 6158510, Japan
| | - Shuping Pan
- Zhejiang Ecological and Environment Monitoring Center, Hangzhou, 310012, China.
| | - Hao Zhang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Angjian Wu
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Li
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Yan
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Sarrai AE, Belaissa Y, Kirdi R, Hanini S, Szabó T, Nagy L. Modeling and optimization of Tylosin adsorption using dehydrated wheat bran: adsorption behaviors, kinetic and thermodynamic studies. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|