1
|
Li L, Zhou M, Yu M, Ren X, Li L, Shen C, Deng C, Liu Y, Yang B. Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. ENVIRONMENTAL RESEARCH 2024; 252:118921. [PMID: 38631474 DOI: 10.1016/j.envres.2024.118921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to β-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 μg/mL, becoming unquantifiable at 100 μg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.
Collapse
Affiliation(s)
- Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China.
| | - Mengya Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Ming Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Xu Ren
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610065, PR China
| | - Linzhi Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Chunjun Shen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Chunping Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Bing Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| |
Collapse
|
2
|
Morgan T, de Rezende RR, Lima TTM, Souza FDO, Alfenas-Zerbini P. Genomic Analysis Unveils the Pervasiveness and Diversity of Prophages Infecting Erwinia Species. Pathogens 2022; 12:pathogens12010044. [PMID: 36678392 PMCID: PMC9866893 DOI: 10.3390/pathogens12010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Prophages are abundant elements integrated into bacterial genomes and contribute to inter-strain genetic variability and, in some cases, modulate the environmental behavior of bacteria, such as pathogen virulence. Here, we described prophage occurrence and diversity in publicly available Erwinia genome assemblies, a genus containing plant pathogens. Prophage-like sequences were identified and taxonomically classified. Sequence diversity was analyzed through intergenomic similarities. Furthermore, we searched for anti-phage defense systems in Erwinia spp., such as DISARM, BREX, and CRISPR-Cas systems, and identified the putative targets of CRISPR spacers. We identified 939 prophage-like sequences in 221 Erwinia spp. genome assemblies. Only 243 prophage-like sequences were classified, all belonging to the Caudoviricetes class. The set of putative Erwinia prophages was mostly unique since only three sequences showed more than 70% intergenomic similarities to known Erwinia phages. Overall, the number and type of CRISPR-Cas systems were conserved within Erwinia species, with many spacers directed to the putative prophages identified. This study increased the knowledge of the diversity and distribution of Erwinia prophages, contributing to the characterization of genetic and ecological factors influencing Erwinia spp. environmental fitness.
Collapse
|