1
|
Katibi KK, Shitu IG, Yunos KFM, Azis RS, Iwar RT, Adamu SB, Umar AM, Adebayo KR. Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:492. [PMID: 38691228 DOI: 10.1007/s10661-024-12574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ibrahim Garba Shitu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khairul Faezah Md Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rabaah Syahidah Azis
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Raphael Terungwa Iwar
- Department of Agricultural and Environmental Engineering, College of Engineering, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Suleiman Bashir Adamu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi, 650221, Nigeria
| | - Kehinde Raheef Adebayo
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria
| |
Collapse
|
2
|
Kiejza D, Piotrowska-Niczyporuk A, Regulska E, Kotowska U. Peracetic acid activated by nickel cobaltite as effective oxidizing agent for BPA and its analogues degradation. CHEMOSPHERE 2024; 354:141684. [PMID: 38494005 DOI: 10.1016/j.chemosphere.2024.141684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The presented research concerns the use of nickel cobaltite nanoparticles (NiCo2O4 NPs) for the heterogeneous activation of peracetic acid and application of NiCo2O4-PAA system for degradation 10 organic micropollutants from the group of bisphenols. The bisphenols removal (initial concentration 1 μM) process was optimized by selecting the appropriate process conditions. The optimal amount of catalyst (115 mg/L), peracetic acid (PAA) concentration (7 mM) and pH (7) were determined using response surface analysis in the Design of Experiment. Then, NiCo2O4 NPs were used to check the possibility of reuse in subsequent oxidation cycles. The work also attempts to explain the mechanism of oxidation of the studied micropollutants. The participation of the sorption process on the catalyst was excluded and based on the experiments with radical scavengers it can be concluded that the oxidation proceeds in a radical pathway, mainly with participation of O2•- radicals. Experiments conducted in real water matrices exhibit low impact on degradation efficiency. Toxicity tests with green alga Acutodesmus obliquus and aquatic plant Lemna minor showed that post-reaction mixture influenced growth and the content of photosynthetic pigments in concentration dependent manner.
Collapse
Affiliation(s)
- Dariusz Kiejza
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland
| | - Elżbieta Regulska
- Faculty of Pharmacy, University of Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain; Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| |
Collapse
|
3
|
Ioannidi AA, Bampos G, Antonopoulou M, Oulego P, Boczkaj G, Mantzavinos D, Frontistis Z. Sonocatalytic degradation of Bisphenol A from aquatic matrices over Pd/CeO 2 nanoparticles: Kinetics study, transformation products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170820. [PMID: 38340814 DOI: 10.1016/j.scitotenv.2024.170820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.
Collapse
Affiliation(s)
- Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Claverías, E-33071 Oviedo, Spain
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece.
| |
Collapse
|
4
|
Dekanovsky L, Huang H, Akir S, Ying Y, Sofer Z, Khezri B. Light-Driven MXene-Based Microrobots: Mineralization of Bisphenol A to CO 2 and H 2 O. SMALL METHODS 2023; 7:e2201547. [PMID: 37075736 DOI: 10.1002/smtd.202201547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed as an active motile platform for efficiently removing and degrading bisphenol A (BPA). Light-driven MXeBOTs are facilitated with the second control engine, i.e., embedded Fe2 O3 nanoparticles (NPs) for magnetic propulsion. The grafted bismuth NPs act as cocatalysts. The effect of the BPA concentration and the chemical composition of the swimming environment on the stability and reusability of the MXeBOTs are studied. The MAXBOTs, a developed motile water remediation platform, demonstrate the ability to remove/degrade approximately 60% of BPA within just 10 min and achieve near-complete removal/degradation (≈100%) within 1 h. Above 86% of BPA is mineralized within 1 h. The photocatalytic degradation of BPA using Bi/Fe/MXeBOTs demonstrates a significant advantage in the mineralization of BPA to CO2 and H2 O.
Collapse
Affiliation(s)
- Lukas Dekanovsky
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
| | - Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
| | - Bahareh Khezri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, Tarragona, 43007, Spain
| |
Collapse
|
5
|
Gałązka A, Jankiewicz U. Endocrine Disrupting Compounds (Nonylphenol and Bisphenol A)-Sources, Harmfulness and Laccase-Assisted Degradation in the Aquatic Environment. Microorganisms 2022; 10:2236. [PMID: 36422306 PMCID: PMC9698202 DOI: 10.3390/microorganisms10112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/23/2025] Open
Abstract
Environmental pollution with organic substances has become one of the world's major problems. Although pollutants occur in the environment at concentrations ranging from nanograms to micrograms per liter, they can have a detrimental effect on species inhabiting aquatic environments. Endocrine disrupting compounds (EDCs) are a particularly dangerous group because they have estrogenic activity. Among EDCs, the alkylphenols commonly used in households deserve attention, from where they go to sewage treatment plants, and then to water reservoirs. New methods of wastewater treatment and removal of high concentrations of xenoestrogens from the aquatic environment are still being searched for. One promising approach is bioremediation, which uses living organisms such as fungi, bacteria, and plants to produce enzymes capable of breaking down organic pollutants. These enzymes include laccase, produced by white rot fungi. The ability of laccase to directly oxidize phenols and other aromatic compounds has become the focus of attention of researchers from around the world. Recent studies show the enormous potential of laccase application in processes such as detoxification and biodegradation of pollutants in natural and industrial wastes.
Collapse
Affiliation(s)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| |
Collapse
|