1
|
Koneczny I, Mané-Damas M, Zong S, De Haas S, Huda S, van Kruining D, Damoiseaux J, De Rosa A, Maestri M, Guida M, Molenaar P, Van Damme P, Fichtenbaum A, Perkmann T, De Baets M, Lazaridis K, Zouvelou V, Tzartos S, Ricciardi R, Losen M, Martinez-Martinez P. A retrospective multicenter study on clinical and serological parameters in patients with MuSK myasthenia gravis with and without general immunosuppression. Front Immunol 2024; 15:1325171. [PMID: 38715598 PMCID: PMC11074957 DOI: 10.3389/fimmu.2024.1325171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Introduction Muscle-specific kinase (MuSK)- myasthenia gravis (MG) is caused by pathogenic autoantibodies against MuSK that correlate with disease severity and are predominantly of the IgG4 subclass. The first-line treatment for MuSK-MG is general immunosuppression with corticosteroids, but the effect of treatment on IgG4 and MuSK IgG4 levels has not been studied. Methods We analyzed the clinical data and sera from 52 MuSK-MG patients (45 female, 7 male, median age 49 (range 17-79) years) from Italy, the Netherlands, Greece and Belgium, and 43 AChR-MG patients (22 female, 21 male, median age 63 (range 2-82) years) from Italy, receiving different types of immunosuppression, and sera from 46 age- and sex-matched non-disease controls (with no diagnosed diseases, 38 female, 8 male, median age 51.5 (range 20-68) years) from the Netherlands. We analyzed the disease severity (assessed by MGFA or QMG score), and measured concentrations of MuSK IgG4, MuSK IgG, total IgG4 and total IgG in the sera by ELISA, RIA and nephelometry. Results We observed that MuSK-MG patients showed a robust clinical improvement and reduction of MuSK IgG after therapy, and that MuSK IgG4 concentrations, but not total IgG4 concentrations, correlated with clinical severity. MuSK IgG and MuSK IgG4 concentrations were reduced after immunosuppression in 4/5 individuals with before-after data, but data from non-linked patient samples showed no difference. Total serum IgG4 levels were within the normal range, with IgG4 levels above threshold (1.35g/L) in 1/52 MuSK-MG, 2/43 AChR-MG patients and 1/45 non-disease controls. MuSK-MG patients improved within the first four years after disease onset, but no further clinical improvement or reduction of MuSK IgG4 were observed four years later, and only 14/52 (26.92%) patients in total, of which 13 (93.3%) received general immunosuppression, reached clinical remission. Discussion We conclude that MuSK-MG patients improve clinically with general immunosuppression but may require further treatment to reach remission. Longitudinal testing of individual patients may be clinically more useful than single measurements of MuSK IgG4. No significant differences in the serum IgG4 concentrations and IgG4/IgG ratio between AChR- and MuSK-MG patients were found during follow-up. Further studies with larger patient and control cohorts are necessary to validate the findings.
Collapse
Affiliation(s)
- Inga Koneczny
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Shenghua Zong
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sander De Haas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Saif Huda
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Walton Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daan van Kruining
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Peter Molenaar
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Philip Van Damme
- Neurology Department, University Hospital, Leuven, Belgium
- Department of Neurosciences, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Andreas Fichtenbaum
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Marc De Baets
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | - Vasiliki Zouvelou
- 1stNeurology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Socrates Tzartos
- Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
- Department of Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
- Cardio Thoracic and Vascular Surgery Department, University of Pisa, Pisa, Italy
| | - Mario Losen
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Wang J, Zhou H, Chen H, Feng H, Chang T, Sun C, Guo R, Ruan Z, Bi F, Li J, Wang J, Wang K, Ma G, Lei S, Wang C, Wang Z, Huang F, Zhang S, Wen Q, Wang Y, Sun Y, Li Y, Xie N, Liu H, Jiang Y, Lei L, Fan Z, Su S, Lu Y, Di L, Xu M, Wang M, Chen H, Wang S, Wen X, Zhu W, Duo J, Huang Y, Zheng D, Da Y. Environmental factors affecting the risk of generalization for ocular-onset myasthenia gravis: a nationwide cohort study. QJM 2024; 117:109-118. [PMID: 37802883 DOI: 10.1093/qjmed/hcad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND The environmental effects on the prognosis of ocular myasthenia gravis (OMG) remain largely unexplored. AIM To investigate the association between specific environmental factors and the generalization of OMG. DESIGN The cohort study was conducted in China based on a nationwide multicenter database. METHODS Adult patients with OMG at onset, who were followed up for at least 2 years until May 2022, were included. We collected data on demographic and clinical factors, as well as environmental factors, including latitude, socioeconomic status (per capita disposable income [PDI] at provincial level and education) and smoking. The study outcome was the time to the development of generalized myasthenia gravis (GMG). Cox models were employed to examine the association between environmental exposures and generalization. Restricted cubic spline was used to model the association of latitude with generalization risk. RESULTS A total of 1396 participants were included. During a median follow-up of 5.15 (interquartile range [IQR] 3.37-9.03) years, 735 patients developed GMG within a median of 5.69 (IQR 1.10-15.66) years. Latitude of 20-50°N showed a U-shaped relation with generalization risk, with the lowest risk at around 30°N; both higher and lower latitudes were associated with the increased risk (P for non-linearity <0.001). Living in areas with lower PDI had 1.28-2.11 times higher risk of generalization. No significant association was observed with education or smoking. CONCLUSIONS Latitude and provincial-level PDI were associated with the generalization of OMG in China. Further studies are warranted to validate our findings and investigate their potential applications in clinical practice and health policy.
Collapse
Affiliation(s)
- Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kang Wang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Gaoting Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shaoyuan Lei
- Department of Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunxiu Wang
- Department of Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhihong Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feifei Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanan Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haoran Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuting Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Lei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhirong Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Suobin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Miyazaki Y, Sakushima K, Niino M, Takahashi E, Oiwa K, Naganuma R, Amino I, Akimoto S, Minami N, Yabe I, Kikuchi S. Smoking and younger age at onset in anti-acetylcholine receptor antibody-positive myasthenia gravis. Immunol Med 2022; 46:77-83. [PMID: 36346077 DOI: 10.1080/25785826.2022.2143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Smoking is a known risk factor for the development and progression of several autoimmune diseases. Previous studies have pointed out the association of smoking with the development and worsening of symptoms in myasthenia gravis (MG), but further investigation is necessary to confirm this association. Smoking history was investigated in a cross-sectional study of 139 patients with anti-acetylcholine receptor antibody-positive MG, and the association of smoking history with the age at the onset of MG was analyzed. Patients who had been smoking at the onset of MG were significantly younger compared with those who had never smoked or had quit before the onset of MG. A linear regression analysis adjusting for sex and the presence/absence of thymoma showed a significant association between smoking at onset and younger age at onset (regression coefficient -9.05; 95% confidence interval, -17.6, -0.51; p = 0.039). Among patients with smoking exposure within 10 years prior to or at the onset of MG, women were significantly younger at the onset of MG compared with men. Our results suggest that smoking is an independent risk factor for the earlier development of anti-acetylcholine receptor antibody-positive MG and further support the putative link between smoking and MG.
Collapse
Affiliation(s)
- Yusei Miyazaki
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ken Sakushima
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Eri Takahashi
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Kei Oiwa
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ryoji Naganuma
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Itaru Amino
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Sachiko Akimoto
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Naoya Minami
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Seiji Kikuchi
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| |
Collapse
|