1
|
Lee J, Beers JL, Cheng I, Truong V, Brown Z, Muluneh B, Coombs CC, Jackson KD. Interindividual variability in CYP3A-mediated venetoclax metabolism in vitro and in vivo in patients with chronic lymphocytic leukemia. Clin Transl Sci 2024; 17:e70106. [PMID: 39673246 PMCID: PMC11645475 DOI: 10.1111/cts.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
Venetoclax is a first-in-class orally administered B-cell lymphoma-2 inhibitor used to treat chronic lymphocytic leukemia (CLL). Venetoclax is primarily metabolized in the liver by cytochrome P450 (CYP) 3A4 to its major metabolite M27, via M5, and M2, M3, and M4 via oxidation. Although venetoclax is a breakthrough in CLL treatment, managing drug safety and toxicity remains a clinical challenge. The objectives of this study were to investigate how individual CYP3A activity and protein expression affect hepatic venetoclax metabolism in vitro and examine whether plasma 4β-hydroxycholesterol (4β-HC)/cholesterol ratio can predict venetoclax metabolism in vitro and in vivo. In human liver microsomes (n = 20) and primary human hepatocytes (n = 15), venetoclax metabolite formation varied widely between donors and significantly correlated with CYP3A activity (midazolam 1'-hydroxylation) and CYP3A4 protein expression. Venetoclax metabolite formation positively correlated with 4β-HC/cholesterol ratio in plasma samples from the matched non-infant donors (n = 14, ages 3-63 years). In an observational pilot study of real-world patients with CLL (n = 12, ages 56-84 years) treated with venetoclax, the plasma M3/venetoclax metabolic ratio negatively correlated with plasma 4β-HC/cholesterol ratio and positively correlated with patient age. Plasma 4β-HC/cholesterol ratio negatively correlated with patient age. Differences between the in vitro data, which showed a positive association between venetoclax metabolism, hepatic CYP3A markers, and plasma 4β-HC/cholesterol ratio, and the in vivo findings in patients with CLL could be due to age or other factors regulating plasma 4β-HC/cholesterol and/or venetoclax disposition. Future studies with larger sample sizes are needed to investigate age-related changes in venetoclax metabolism and plasma 4β-HC/cholesterol ratio.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Sulfonamides/pharmacokinetics
- Sulfonamides/administration & dosage
- Cytochrome P-450 CYP3A/metabolism
- Middle Aged
- Aged
- Male
- Female
- Microsomes, Liver/metabolism
- Hepatocytes/metabolism
- Aged, 80 and over
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Adult
- Cholesterol/metabolism
- Cholesterol/blood
- Hydroxycholesterols/blood
- Hydroxycholesterols/metabolism
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
- Present address:
Department of PharmaceuticsUniversity of Washington School of PharmacySeattleWashingtonUSA
| | - Isabel Cheng
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Vivian Truong
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Zachary Brown
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Benyam Muluneh
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Catherine C. Coombs
- Division of Hematology/OncologyUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
- Present address:
University of California IrvineIrvineCaliforniaUSA
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
3
|
Sensitive UHPLC-MS/MS quantification method for 4β- and 4α-hydroxycholesterol in human plasma for accurate CYP3A phenotyping. J Lipid Res 2022; 63:100184. [PMID: 35181316 PMCID: PMC8953653 DOI: 10.1016/j.jlr.2022.100184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
4β-Hydroxycholesterol (4β-OHC) is formed by CYP3A4 and CYP3A5 and has drawn attention as an endogenous phenotyping probe for CYP3A activity. However, 4β-OHC is also increased by cholesterol autooxidation occurring in vitro due to dysregulated storage and in vivo by oxidative stress or inflammation, independent of CYP3A activity. 4α-hydroxycholesterol (4α-OHC), a stereoisomer of 4β-OHC, is also formed via autooxidation of cholesterol, not by CYP3A, and thus may have clinical potential in reflecting the state of cholesterol autooxidation. In this study, we establish a sensitive method for simultaneous quantification of 4β-OHC and 4α-OHC in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Plasma samples were prepared by saponification, two-step liquid-liquid extraction, and derivatization using picolinic acid. Intense [M+H]+ signals for 4β-OHC and 4α-OHC di-picolinyl esters were monitored using electrospray ionization. The assay fulfilled the requirements of the US Food and Drug Administration guidance for bioanalytical method validation, with a lower limit of quantification of 0.5 ng/mL for both 4β-OHC and 4α-OHC. Apparent recovery rates from human plasma ranged from 88.2% to 101.5% for 4β-OHC, and 91.8% to 114.9% for 4α-OHC. Additionally, matrix effects varied between 86.2% and 117.6% for 4β-OHC, and between 89.5% and 116.9% for 4α-OHC. Plasma 4β-OHC and 4α-OHC concentrations in healthy volunteers, stage 3-5 chronic kidney disease (CKD) patients, and stage 5D CKD patients as measured by the validated assay were within the calibration ranges in all samples. We propose this novel quantification method may contribute to accurate evaluation of in vivo CYP3A activity.
Collapse
|
4
|
New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int J Mol Sci 2022; 23:ijms23042020. [PMID: 35216140 PMCID: PMC8876989 DOI: 10.3390/ijms23042020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.
Collapse
|