1
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
2
|
Richter-Laskowska M, Trybek P, Delfino DV, Wawrzkiewicz-Jałowiecka A. Flavonoids as Modulators of Potassium Channels. Int J Mol Sci 2023; 24:1311. [PMID: 36674825 PMCID: PMC9861088 DOI: 10.3390/ijms24021311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Potassium channels are widely distributed integral proteins responsible for the effective and selective transport of K+ ions through the biological membranes. According to the existing structural and mechanistic differences, they are divided into several groups. All of them are considered important molecular drug targets due to their physiological roles, including the regulation of membrane potential or cell signaling. One of the recent trends in molecular pharmacology is the evaluation of the therapeutic potential of natural compounds and their derivatives, which can exhibit high specificity and effectiveness. Among the pharmaceuticals of plant origin, which are potassium channel modulators, flavonoids appear as a powerful group of biologically active substances. It is caused by their well-documented anti-oxidative, anti-inflammatory, anti-mutagenic, anti-carcinogenic, and antidiabetic effects on human health. Here, we focus on presenting the current state of knowledge about the possibilities of modulation of particular types of potassium channels by different flavonoids. Additionally, the biological meaning of the flavonoid-mediated changes in the activity of K+ channels will be outlined. Finally, novel promising directions for further research in this area will be proposed.
Collapse
Affiliation(s)
- Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network—Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | | | - Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Wu Z, Liu L. The protective activity of genistein against bone and cartilage diseases. Front Pharmacol 2022; 13:1016981. [PMID: 36160403 PMCID: PMC9492956 DOI: 10.3389/fphar.2022.1016981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Genistein, a natural isoflavone rich in soybean and leguminous plants, has been shown various biological effects, such as anti-inflammation, anti-oxidation, anti-cancer, and bone/cartilage protection. Due to the structural similarity to estrogen, genistein exhibits estrogen-like activity in protecting against osteoporosis and osteoarthritis. Furthermore, genistein has been considered as an inhibitor of tyrosine kinase, which has been found to be dysregulated in the pathological development of osteoporosis, osteoarthritis, and intervertebral disc degeneration (IDD). Many signaling pathways, such as MAPK, NF-κB, and NRF2/HO-1, are involved in the regulatory activity of genistein in protecting against bone and cartilage diseases. The potential molecular mechanisms of genistein in therapeutic management of bone and cartilage diseases have been investigated, but remain to be fully understood. In this article, we mainly discuss the current knowledge of genistein in protecting against bone and cartilage diseases, such as osteoporosis, osteoarthritis, rheumatoid arthritis (RA), and IDD.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
- *Correspondence: Zhenyu Wu,
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Role of Polyphenols in the Metabolism of the Skeletal System in Humans and Animals – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Polyphenols are a group of compounds arousing enormous interest due to their multiple effects on both human and animal health and omnipresence in plants. A number of in vitro and animal model studies have shown that all polyphenols exhibit anti-inflammatory and antioxidant activities, and play a significant role against oxidative stress-related pathologies. They also exert gut promotory effects and prevent chronic degenerative diseases. However, less attention has been paid to the potential influence of polyphenols on bone properties and metabolism. It is well known that proper growth and functioning of the organism depend largely on bone growth and health. Therefore, understanding the action of substances (including polyphenols) that may improve the health and functioning of the skeletal system and bone metabolism is extremely important for the health of the present and future generations of both humans and farm animals. This review provides a comprehensive summary of literature related to causes of bone loss during ageing of the organism (in both humans and animals) and possible effects of dietary polyphenols preventing bone loss and diseases. In particular, the underlying cellular and molecular mechanisms that can modulate skeletal homeostasis and influence the bone modeling and remodeling processes are presented.
Collapse
|
5
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
6
|
Effects of the Dichloromethane Fraction of Dipsaci Radix on the Osteoblastic Differentiation of Human Alveolar Bone Marrow-Derived Mesenchymal Stem Cells. Biosci Biotechnol Biochem 2014; 75:13-9. [DOI: 10.1271/bbb.100379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
|
8
|
Leroy MC, Perroud J, Darbellay B, Bernheim L, Konig S. Epidermal growth factor receptor down-regulation triggers human myoblast differentiation. PLoS One 2013; 8:e71770. [PMID: 23967242 PMCID: PMC3744467 DOI: 10.1371/journal.pone.0071770] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/09/2013] [Indexed: 12/02/2022] Open
Abstract
Initiation of human myoblast differentiation requires a negative shift (hyperpolarization) of the resting potential of myoblasts that depends on the activation of Kir2.1 potassium channels. These channels are regulated by a tyrosine phosphorylation. Using human primary myoblast culture, we investigated a possible role of various receptor tyrosine kinases in the induction of the differentiation process. We found that Epidermal Growth Factor Receptor (EGFR) is a key regulator of myoblast differentiation. EGFR activity is down-regulated during early human myoblast differentiation, and this event is required for normal differentiation to take place. Furthermore, EGFR silencing in proliferation conditions was able to trigger the differentiation program. This occurs through an increase of Kir2.1 channel activity that, via a rise of store-operated Ca2+ entry, leads to the expression of myogenic transcription factors and muscle specific proteins (Myogenin, Myocyte Enhancer Factor 2 (MEF2), Myosin Heavy Chain (MyHC)). Finally, blocking myoblast cell cycle in proliferation conditions using a cdk4 inhibitor greatly decreased myoblast proliferation but was not able, on its own, to promote myoblast differentiation. Taken together, these results show that EGFR down-regulation is an early event that is required for the induction of myoblast differentiation.
Collapse
Affiliation(s)
- Marina C. Leroy
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Julie Perroud
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Basile Darbellay
- Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Stephane Konig
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 2013; 228:513-21. [PMID: 22777826 DOI: 10.1002/jcp.24158] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022]
Abstract
Increasingly natural products particularly flavonoids are being explored for their therapeutic potentials in reducing bone loss and maintaining bone health. This study has reviewed previous studies on the two better known flavonoids, genistein and icariin, their structures, functions, action mechanisms, relative potency, and potential application in regulating bone remodeling and preventing bone loss. Genistein, an isoflavone abundant in soy, has dual functions on bone cells, able to inhibit bone resorption activity of osteoclasts and stimulate osteogenic differentiation and maturation of bone marrow stromal progenitor cells (BMSCs) and osteoblasts. Genistein is an estrogen receptor (ER)-selective binding phytoestrogen, with a greater affinity to ERβ. Genistein inhibits tyrosine kinases and inhibits DNA topoisomerases I and II, and may act as an antioxidant. Genistein enhances osteoblastic differentiation and maturation by activation of ER, p38MAPK-Runx2, and NO/cGMP pathways, and it inhibits osteoclast formation and bone resorption through inducing osteoclastogenic inhibitor osteoprotegerin (OPG) and blocking NF-κB signaling. Icariin, a prenylated flavonol glycoside isolated from Epimedium herb, stimulates osteogenic differentiation of BMSCs and inhibits bone resorption activity of osteoclasts. Icariin, whose metabolites include icariside I, icariside II, icaritin, and desmethylicaritin, has no estrogenic activity. However, icariin is more potent than genistein in promoting osteogenic differentiation and maturation of osteoblasts. The existence of a prenyl group on C-8 of icariin molecular structure has been suggested to be the reason why icariin is more potent than genistein in osteogenic activity. Thus, the prenylflavonoids may represent a class of flavonoids with a higher osteogenic activity.
Collapse
Affiliation(s)
- Lei-Guo Ming
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of PLA, Lanzhou, People's Republic of China
| | | | | |
Collapse
|
10
|
Cavani F, Ferretti M, Carnevale G, Bertoni L, Zavatti M, Palumbo C. Effects of different doses of ferutinin on bone formation/resorption in ovariectomized rats. J Bone Miner Metab 2012; 30:619-29. [PMID: 22828874 DOI: 10.1007/s00774-012-0366-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/29/2012] [Indexed: 11/30/2022]
Abstract
This study analyzes the effects of different doses of ferutinin on bone loss caused by estrogen deficiency in ovariectomized rats, in comparison with estradiol benzoate. Thirty female Sprague-Dawley rats were ovariectomized and treated for 30 days from the day after ovariectomy. Static/dynamic histomorphometric analyses were performed on trabecular and cortical bone of lumbar vertebrae and femurs. Very low weight increments were recorded only in all F-OVX groups, with respect to the others. Although the great differences in weight, that could imply a decrease of bone mass in F-OVX groups compared to the control ovariectomized group (C-OVX), trabecular bone in lumbar vertebrae did not show significant differences, suggesting that ferutinin, opposing estrogen deficiency, inhibits bone resorption. Newly formed cortical bone was always low in all F-OVX groups and high in C-OVX, suggesting that it is mainly devoted in answering mechanical demands. In contrast, in distal femoral metaphyses, trabecular bone was reduced and the number of osteoclasts was increased in C-OVX with respect to all other groups, suggesting that it is mainly devoted in answering metabolic demands; moreover, ferutinin dose of 2 mg/kg seemed to be more effective than the lower doses used and estrogens, particularly in those skeletal regions with higher metabolic activity. Our results suggest that the role of ferutinin in preventing osteoporosis caused by estrogen deficiency is expressed in decreasing bone erosion; moreover, in all F-OVX groups bone turnover is very low and seems correlated to the trivial body weight increase, which, in turn, depends on ferutinin treatment.
Collapse
Affiliation(s)
- Francesco Cavani
- Dipartimento di Scienze biomediche, Sezione di Morfologia umana, Istituti Anatomici, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Deng WM, Zhang P, Huang H, Shen YG, Yang QH, Cui WL, He YS, Wei S, Ye Z, Liu F, Qin L. Five-year follow-up study of a kidney-tonifying herbal Fufang for prevention of postmenopausal osteoporosis and fragility fractures. J Bone Miner Metab 2012; 30:517-24. [PMID: 22722637 DOI: 10.1007/s00774-012-0351-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/07/2012] [Indexed: 01/07/2023]
Abstract
To observe the kidney-tonifying herbal Fufangs with phytoestrogenic epimedium for prevention of postmenopausal osteoporosis with both bone mineral density (BMD) and fracture as study endpoints, a 5-year multicenter follow-up study in 194 postmenopausal women (47-70 years old) was conducted in which the subjects were given oral administration of herbal Fufang (10 g/day, twice per day, n = 101) or placebo (n = 93). Both groups were supplemented daily with calcium (600 mg) and vitamin D (400 IU). BMD at distal radius, potential adverse events, and fracture incidence were evaluated at baseline and at 6, 12, 24, 36, 48, and 60 months. At the end of 5 years, 155 subjects had completed the study, with better adherence in the treatment group (13% dropouts, n = 88 at year 5) as compared with the control group (28% dropouts, n = 67 at year 5) (P < 0.05). No notable adverse events were observed in either group. In the treatment group BMD increased significantly from baseline (0.211 ± 0.022 g/cm(2)) to the end of the study (0.284 ± 0.015 g/cm(2)), whereas the control group decreased significantly from baseline (0.212 ± 0.023 g/cm(2)) to 5 years later (0.187 ± 0.022 g/cm(2)) (P < 0.05). The fracture incidence was 2.4 fold lower in the treatment group than in the control group, with a relative risk of 0.57 for the treatment group (95% CI, 0.43-0.70, P < 0.05). In conclusion, in addition to the beneficial effects of oral herbal Fufang on prevention of postmenopausal bone loss, this 5-year multi-center clinical study demonstrated for the first time its potential for reduction in fragility fracture incidence.
Collapse
Affiliation(s)
- Wei-Min Deng
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang CL, Tsai ML, Wu SN. Evidence for mitoxantrone-induced block of inwardly rectifying K(+) channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide. Cell Physiol Biochem 2012; 30:687-701. [PMID: 22854649 DOI: 10.1159/000341449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. METHODS In this study, the effects of MX and other related compounds on inwardly rectifying K(+) current (I(K(IR))) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. RESULTS The I(K(IR))in these cells are blocked by BaCl(2) (1 mM). MX (1-100 µM) decreased the amplitude of I(K(IR)) in a concentration-dependent manner with an IC(50) value of 6.4 µM. MX also slowed the time course of I(K(IR)) inactivation elicited by large hyperpolarization. Doxorubicin (10 µM), 17β-estradiol (10 µM) and tertiapin (1 µM) decreased the I(K(IR)) amplitude in these cells. In bafilomycin A(1)-treated cells, MX-mediated block of I(K(IR)) still existed. In cell-attached configuration, when the electrode was filled with MX (10 µM), the activity of inwardly rectifying K(+) (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease the I(K(IR)) amplitude and to depolarize the membrane in these cells. CONCLUSION The block by this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.
Collapse
Affiliation(s)
- Chung-Lin Wang
- Department of Nursing, Chung Jen College of Nursing, Health Sciences and Management, Chiayi city, Taiwan
| | | | | |
Collapse
|
13
|
Son YK, Hong DH, Choi TH, Choi SW, Shin DH, Kim SJ, Jung ID, Park YM, Jung WK, Kim DJ, Choi IW, Park WS. The inhibitory effect of BIM (I) on L-type Ca²⁺ channels in rat ventricular cells. Biochem Biophys Res Commun 2012; 423:110-5. [PMID: 22634012 DOI: 10.1016/j.bbrc.2012.05.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/04/2023]
Abstract
We investigated the effect of a specific protein kinase C (PKC) inhibitor, bisindolylmaleimide I [BIM (I)], on L-type Ca(2+) channels in rat ventricular myocytes. BIM (I) alone inhibited the L-type Ca(2+) current in a concentration-dependent manner, with a K(d) value of 3.31 ± 0.25 μM, and a Hill coefficient of 2.34 ± 0.23. Inhibition was immediate after applying BIM (I) in the bath solution and then it partially washed out. The steady-state activation curve was not altered by applying 3μ M BIM (I), but the steady-state inactivation curve shifted to a more negative potential with a change in the slope factor. Other PKC inhibitors, PKC-IP and chelerythrine, showed no significant effects either on the L-type Ca(2+) current or on the inhibitory effect of BIM (I) on the L-type Ca(2+) current. The results suggest that the inhibitory effect of BIM (I) on the L-type Ca(2+) current is independent of the PKC pathway. Thus, our results should be considered in studies using BIM (I) to inhibit PKC activity and ion channel modulation.
Collapse
Affiliation(s)
- Youn Kyoung Son
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Zhang YH, Wu W, Sun HY, Deng XL, Cheng LC, Li X, Tse HF, Lau CP, Li GR. Modulation of human cardiac transient outward potassium current by EGFR tyrosine kinase and Src-family kinases. Cardiovasc Res 2011; 93:424-33. [PMID: 22198508 DOI: 10.1093/cvr/cvr347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS The human cardiac transient outward K(+) current I(to) (encoded by Kv4.3 or KCND3) plays an important role in phase 1 rapid repolarization of cardiac action potentials in the heart. However, modulation of I(to) by intracellular signal transduction is not fully understood. The present study was therefore designed to determine whether/how human atrial I(to) and hKv4.3 channels stably expressed in HEK 293 cells are regulated by protein tyrosine kinases (PTKs). METHODS AND RESULTS Whole-cell patch voltage-clamp, immunoprecipitation, western blotting, and site-directed mutagenesis approaches were employed in the present study. We found that human atrial I(to) was inhibited by the broad-spectrum PTK inhibitor genistein, the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556, and the Src-family kinases inhibitor PP2. The inhibitory effect was countered by the protein tyrosine phosphatase inhibitor orthovanadate. In HEK 293 cells stably expressing human KCND3, genistein, AG556, and PP2 significantly reduced the hKv4.3 current, and the reduction was antagonized by orthovanadate. Interestingly, orthovanadate also reversed the reduced tyrosine phosphorylation level of hKv4.3 channels by genistein, AG556, or PP2. Mutagenesis revealed that the hKv4.3 mutant Y136F lost the inhibitory response to AG556, while Y108F lost response to PP2. The double-mutant Y108F-Y136F hKv4.3 channels showed no response to either AG556 or PP2. CONCLUSION Our results demonstrate that human atrial I(to) and cloned hKv4.3 channels are modulated by EGFR kinase via phosphorylation of the Y136 residue and by Src-family kinases via phosphorylation of the Y108 residue; tyrosine phosphorylation of the channel may be involved in regulating cardiac electrophysiology.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4-59, Laboratory Block, FMB, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effects of pomegranate extracts on cartilage, bone and mesenchymal cells of mouse fetuses. Br J Nutr 2011; 107:683-90. [PMID: 21781378 DOI: 10.1017/s0007114511003394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pomegranate is a rich source of polyphenols, which are believed to be responsible for the oestrogenic activities of extracts of this fruit in mice. One of these potential activities is the prevention of bone loss. The objectives of the present study were to determine the effects of pomegranate extract on chondrogenesis and osteogenesis in mouse embryos in vivo and limb bud cultures in vitro. A total of fifty pregnant Balb/c mice were given vehicle, pomegranate juice extract (PJE), pomegranate husk extract (PHE) or a mixture of husk and juice extract (PME). Their embryos were stained with alizarin red S and alcian blue, and the length of the femur, tibia and their ossification zones were measured on day 19 of gestation. Bone Ca content in pregnant mice was also measured. Mice treated with PJE showed an increase in bone Ca content. Dietary supplementation with all extracts significantly increased embryo femur length and osteogenesis index. Mesenchymal cells from fetal limb buds were cultured and exposed to 10, 100, 1000 and 10 000 μg/ml of PJE, PHE or PME. The number of viable cells was greater in cultures exposed to the extracts than in control cultures. The number of cartilage nodules and their diameters were greater in extract-treated cell cultures, a finding which reflected increased cell proliferation and differentiation rates. In conclusion, the findings of the present study suggest that pomegranate is able to enhance bone formation.
Collapse
|
17
|
Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS. Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers (Basel) 2011; 3:428-445. [PMID: 24212623 PMCID: PMC3756370 DOI: 10.3390/cancers3010428] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022] Open
Abstract
Cancer chemoprevention is defined as the use of natural agents to suppress, reverse or prevent the carcinogenic process from turning into aggressive cancer. Over the last two decades, multiple natural dietary compounds with diverse chemical structures such flavonoids, tannins, curcumins and polyphenols have been proposed as chemopreventive agents. These agents have proven excellent anticancer potential in the laboratory setting, however, the observed effects in vitro do not translate in clinic where they fail to live up to their expectations. Among the various reasons for this discrepancy include inefficient systemic delivery and robust bioavailability. To overcome this barrier, researchers have focused towards coupling these agents with nano based encapsulation technology that in principle will enhance bioavailability and ultimately benefit clinical outcome. The last decade has witnessed rapid advancement in the development of nanochemopreventive technology with emergence of many nano encapsulated formulations of different dietary anticancer agents. This review summarizes the most up-to-date knowledge on the studies performed in nanochemoprevention, their proposed use in the clinic and future directions in which this field is heading. As the knowledge of the dynamics of nano encapsulation evolves, it is expected that researchers will bring forward newer and far more superior nanochemopreventive agents that may become standard drugs for different cancers.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| | | | | | | | | |
Collapse
|
18
|
Shim KS, Lee JH, Ma CJ, Lee YH, Choi SU, Lee J, Ma JY. Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.528615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Chennaiah S, Vijayalakshmi V, Suresh C. Effect of the supplementation of dietary rich phytoestrogens in altering the vitamin D levels in diet induced osteoporotic rat model. J Steroid Biochem Mol Biol 2010; 121:268-72. [PMID: 20362669 DOI: 10.1016/j.jsbmb.2010.03.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
Plant-derived estrogen-like compounds such as isoflavones (IF) especially daidzein and genistein are said to be preserving the bone in the osteoporotic conditions. However, it is not known whether a combination of IF and calcium (Ca) supplementation attenuates losses in bone mass and prevents the loss of vitamin D (VD). The present study addresses the role of phytoestrogens (PE) and Ca supplementation in low Ca and low VD diet induced osteoporosis (OSP). Cowpea (CP) which has high amount of the IF was selected to study its effect on diet induced osteoporotic conditions. Female weanling WNIN rats (total of 68) were divided into five groups and fed for five weeks on semisynthetic diet with low Ca (0.15%) and low VD (0.1IU/day/rat) in combination with low (10 mg/kg) or high (25 mg/kg) concentrations of PEs derived from CPIF. The study groups are: (I) normal Ca(0.47%) and normal VD (25IU/day/rat), (II) low Ca+low VD, (III) low Ca+low VD+low CPIF (10 mg/kg diet), (IV) low Ca+low VD+high CPIF (25 mg/kg diet) and (V) low Ca+low VD+17-(-estradiol (3.2 mg/kg diet). After the development of OSP the group II was subgrouped into: (SG I) continued on low Ca+VD, (SG II) low CPIF, (SG III) high CPIF, (SG IV) 17-beta-estradiol and (SG V) normal Ca and VD. Serum 25-VD levels were in the range of 14-38 ng/ml in groups I, III, IV and V, where as the values were very low in the group II (5.8 ng/ml). These were partially reversed upon supplementation of CPIF. The results correlated with altered Ca levels, body weight, bone mineral density and content and other related biochemical parameters. The paper further explains the possibility of protective and therapeutic role of VD in the presence of CPIF in osteoporotic health manifestations.
Collapse
Affiliation(s)
- S Chennaiah
- Division of Endocrinology & Metabolism, National Institute of Nutrition, Hyderabad 500007, India
| | | | | |
Collapse
|
20
|
Abstract
Genistein and daidzein are known to have both beneficial and adverse effects on human health due to their many biological actions at the cellular level. Both isoflavones have been shown to inhibit GLUT-mediated glucose transport across the plasma membrane of mammalian cells. Since lysosomal membrane transport is essential for maintaining cellular homeostasis, the present study examined the effects of genistein and daidzein on glucose and sulphate transport in isolated rat liver lysosomes. Both genistein and daidzein significantly inhibited lysosomal glucose uptake. Genistein was a more potent glucose transport inhibitor than daidzein, with a half-maximum inhibitory concentration (IC(50)) of 45 micromol/l compared with 71 micromol/l for daidzein. Uptake kinetics of d-glucose showed a significant decrease in Vmax (control:genistein treat = 1489 (sem 91):507 (sem 76) pmol/unit of beta-hexosaminidase per 15 s) without a change in K(m). The presence of 50 microm-genistein in the medium also reduced glucose efflux from lysosomes preloaded with 100 mm-d-glucose. Genistein also inhibited lysosomal sulphate transport. Similar to its effects on glucose uptake kinetics, genistein treatment caused a significant decrease in sulphate uptake V(max) (control:genistein treat = 87 (sem 4):59 (sem 5) pmol/unit of beta-hexosaminidase per 30 s), while the K(m) was not affected. The evidence provided by the present study suggests that the most likely mechanism of lysosomal glucose transport inhibition by genistein is via direct interaction between genistein and the transporter, rather than mediation by tyrosine kinase inactivation. Genistein likely has a similar mechanism of directly inhibiting sulphate transporter.
Collapse
|
21
|
Effects of genistein aglycone in osteoporotic, ovariectomized rats: a comparison with alendronate, raloxifene and oestradiol. Br J Pharmacol 2008; 155:896-905. [PMID: 18695641 PMCID: PMC2515927 DOI: 10.1038/bjp.2008.305] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background and purpose: Genistein aglycone positively affects bone loss in postmenopausal women, but bone quality data are still lacking. To clarify this, we investigated the effects of genistein compared with alendronate, raloxifene and oestradiol in an animal model of established osteoporosis. Experimental approach: Six months after ovariectomy, 96 ovariectomized (OVX) rats were divided into 8 equal groups, randomized to treatments (genistein aglycone (1 and 10 mg kg−1 s.c.); alendronate (0.003 and 0.03 mg kg−1 s.c.); raloxifene hydrochloride (0.05 and 0.5 mg kg−1 s.c.); 17-α-ethinyl oestradiol (0.003 and 0.03 mg kg−1 s.c.)) for 12 weeks. Untreated OVX (n=12) and sham OVX (n=12) were used as controls. At the beginning and end of treatment, bone mineral density (BMD) and bone mineral content (BMC) were assessed. At the end of the experiment, calcium, phosphorus, bone-alkaline phosphatase (b-ALP), collagen C-telopeptide (CTX), osteoprotegerin (OPG) and soluble receptor activator of nuclear factor-κB ligand (sRANKL) were assayed. Femurs were removed and tested for breaking strength and histology. Key results: Genistein (10 mg kg−1) showed a greater increase in both BMD (P<0.0001 vs OVX) and BMC than all the other treatments. Moreover, genistein significantly increased breaking strength, bone quality, b-ALP (P<0.0001 vs OVX) and OPG, and reduced CTX and sRANKL compared with the other treatments at all dose levels. Conclusions and implications: The results strongly suggest that the genistein aglycone might be a new therapy for the management of postmenopausal osteoporosis in humans.
Collapse
|
22
|
Abstract
Due to their ability to mimic the actions of mammalian estrogens, soy phytoestrogens have been proposed as potential therapeutic agents to aid in preventing postmenopausal bone loss. In vitro, phytoestrogens promote osteoblastogenesis and inhibit osteoclastogenesis. Although a relatively large number of intervention studies have been undertaken in animals and humans, the efficacy of phytoestrogens as bone-protective agents in vivo remains unclear. Differences in the bioactivities of individual phytoestrogens, differences in phytoestrogen metabolism and bioavailability within different study populations, and imprecise reporting of the dose of phytoestrogens administered in intervention studies may have contributed to the disparity in study findings.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
23
|
Frascarelli S, Ghelardoni S, Chiellini G, Vargiu R, Ronca-Testoni S, Scanlan TS, Grandy DK, Zucchi R. Cardiac effects of trace amines: Pharmacological characterization of trace amine-associated receptors. Eur J Pharmacol 2008; 587:231-6. [DOI: 10.1016/j.ejphar.2008.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 03/14/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
24
|
Okabe Y, Tanimoto H. Effects of Dietary Intake of Isoflavone Aglycone-rich Fermented Soybeans on Bone Metabolism in Ovariectomized Rats. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Okabe
- Research Institute for Health Fundamentals, Ajinomoto Co., Inc
| | | |
Collapse
|
25
|
Molecular basis for genistein-induced inhibition of Kir2.3 currents. Pflugers Arch 2007; 456:413-23. [DOI: 10.1007/s00424-007-0391-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/25/2007] [Accepted: 11/05/2007] [Indexed: 01/01/2023]
|
26
|
Zhang G, Qin L, Shi Y. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res 2007; 22:1072-9. [PMID: 17419678 DOI: 10.1359/jbmr.070405] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Epimedium brevicornum maxim, a nonleguminous medicinal plant, has been found to be rich in phytoestrogen flavonoids. Results from a 24-month randomized double-blind placebo-controlled clinical trial showed that Epimedium-derived phytoestrogen flavonoids were able to exert beneficial effects on preventing bone loss in late postmenopausal women, without resulting in a detectable hyperplasia effect on the endometrium. INTRODUCTION We performed a 24-mo randomized double-blind placebo-controlled clinical trial for evaluating the effect of the Epimedium-derived phytoestrogen flavonoids (EPFs) on BMD, bone turnover biochemical markers, serum estradiol, and endometrial thickness in postmenopausal women. MATERIALS AND METHODS One hundred healthy late postmenopausal women, with a natural menopausal history within 10 approximately 18 yr and with a BMD T-score at the lumbar spine between -2 and -2.5 SD, were randomized into EPF treatment group (n = 50; a daily dose of 60 mg Icariin, 15 mg Daidzein, and 3 mg Genistein) or placebo control group (n = 50). All participants received 300 mg element calcium daily. BMD, bone turnover biochemical markers, serum estradiol, and endometrial thickness were measured at baseline and 12 and 24 mo after intervention. RESULTS Eighty-five participants completed the trial. The patterns of BMD changes were significantly different between the EPF treatment group and placebo control group by repeated-measures ANOVA (p = 0.045 for interaction between time and group at femoral neck; p = 0.006 for interaction between time and group at lumbar spine). BMD was found with a decreased tendency in the placebo control group at 12 (femoral neck: -1.4%, p = 0.104; lumbar spine: -1.7%, p = 0.019) and 24 mo (femoral neck: -1.8%, p = 0.048; lumbar spine: -2.4%, p = 0.002), whereas EPF treatment maintained BMD at 12 (femoral neck: 1.1%, p = 0.285; lumbar spine:1.0%, p = 0.158) and 24 mo (femoral neck: 1.6%, p = 0.148; lumbar spine: 1.3%, p = 0.091). The difference in lumbar spine between the two groups was significant at both 12 (p = 0.044) and 24 mo (p = 0.006), whereas the difference in the femoral neck was marginal at 12 mo (p = 0.061) and significant at 24 mo (p = 0.008). Levels of bone biochemical markers did not change in the placebo control group. In contrast, EPF intervention significantly decreased levels of deoxypyrdinoline at 12 (-43%, p = 0.000) and 24 mo (-39%, p = 0.000), except for osteocalcin at 12 (5.6%, p = 0.530) and 24 mo (10.7%, p = 0.267). A significant difference in deoxypyrdinoline between the two groups was found at both 12 (p = 0.000) and 24 mo (p = 0.001). Furthermore, neither serum estradiol nor endometrial thickness was found to be changed in either groups during the clinical trial. CONCLUSIONS EPFs exert a beneficial effect on preventing bone loss in late postmenopausal women without resulting in a detectable hyperplasia effect on the endometrium.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
27
|
Kim MH, Kim BT, Min YK, Kim SH. Profiling signalling pathways of the receptor activator of NF-kappaB ligand-induced osteoclast formation in mouse monocyte cells, RAW264.7. Amino Acids 2006; 34:497-506. [PMID: 17086477 DOI: 10.1007/s00726-006-0461-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Cell-based signal chemical genomics can profile the signalling pathway for certain cellular events by using a target-known chemical library. To ascertain its usefulness, the receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis in mouse monocyte/macrophage cells RAW264.7 was used as an in vitro experimental model. Of 180 target-known inhibitors/activators formatted in a 384-well plate, 8 chemicals were shown to inhibit the osteoclast formation, but 4 chemicals enhanced this process. A variety of references support, or possibly lead one to expect the effects of these 12 chemicals on the cellular process of osteoclastogenesis in RAW264.7 cells, but several signalling pathways were newly found in this study; for example, CA-074 Me inhibiting cathepsin B and nitrendipine blocking the calcium channel could have the potential to inhibit the osteoclast formation as well as bone resorption. This is a simple but very fast and powerful method of profiling the signalling pathway of certain cellular events. Signal chemical genomics could provide invaluable information for the exploration of new target signalling processes and further target-based drug discovery strategies.
Collapse
Affiliation(s)
- M H Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | | | | | | |
Collapse
|
28
|
Hendrich AB. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sin 2006; 27:27-40. [PMID: 16364208 DOI: 10.1111/j.1745-7254.2006.00238.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavonoids are found ubiquitously in higher plants and constitute an important component of the majority of people daily diets. The biological activities of flavonoids cover a very broad spectrum, from anticancer and antibacterial activities through to inhibition of bone resorption. In the present paper, the interactions between flavonoids and lipid bilayers as well as biological membranes and their components are reviewed, with special emphasis on the structure-activity relationships and mechanisms underlying the biological activity of flavonoids.
Collapse
|
29
|
Okamoto F, Kajiya H, Fukushima H, Jimi E, Okabe K. Prostaglandin E2 activates outwardly rectifying Cl(-) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts. Am J Physiol Cell Physiol 2004; 287:C114-24. [PMID: 15044156 DOI: 10.1152/ajpcell.00551.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined changes in electrical and morphological properties of rat osteoclasts in response to prostaglandin (PG)E(2). PGE(2) (>10 nM) stimulated an outwardly rectifying Cl(-) current in a concentration-dependent manner and caused a long-lasting depolarization of cell membrane. This PGE(2)-induced Cl(-) current was reversibly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and tamoxifen. The anion permeability sequence of this current was I(-) > Br(-) approximately Cl(-) > gluconate(-). When outwardly rectifying Cl(-) current was induced by hyposmotic extracellular solution, no further stimulatory effect of PGE(2) was seen. Forskolin and dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) mimicked the effect of PGE(2). The PGE(2)-induced Cl(-) current was inhibited by pretreatment with guanosine 5'-O-2-(thiodiphosphate) (GDPbetaS), Rp-adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS), N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide dihydrochloride (H-89), and protein kinase A inhibitors. Even in the absence of nonosteoclastic cells, PGE(2) (1 microM) reduced cell surface area and suppressed motility of osteoclasts, and these effects were abolished by Rp-cAMPS or H-89. PGE(2) is known to exert its effects through four subtypes of PGE receptors (EP1-EP4). EP2 and EP4 agonists (ONO-AE1-259 and ONO-AE1-329, respectively), but not EP1 and EP3 agonists (ONO-DI-004 and ONO-AE-248, respectively), mimicked the electrical and morphological actions of PGE(2) on osteoclasts. Our results show that PGE(2) stimulates rat osteoclast Cl(-) current by activation of a cAMP-dependent pathway through EP2 and, to a lesser degree, EP4 receptors and reduces osteoclast motility. This effect is likely to reduce bone resorption.
Collapse
Affiliation(s)
- Fujio Okamoto
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan 814-0193.
| | | | | | | | | |
Collapse
|
30
|
Setchell KDR, Lydeking-Olsen E. Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr 2003; 78:593S-609S. [PMID: 12936954 DOI: 10.1093/ajcn/78.3.593s] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Impressive data from the many studies on cultured bone cells and rat models of postmenopausal osteoporosis support a significant bone-sparing effect of the soy isoflavones genistein and daidzein. Translating this research to the clinic has been more challenging, and thus far only a few clinical studies have attempted to tease out the influence of phytoestrogens on bone from the many other components of the diet. Human studies have shown promising although variable results. Studies have been mostly of short duration and with relatively small sample sizes, making it difficult to observe significant and accurate changes in bone. Levels of intake of the soy protein and isoflavones are varied, and the optimal isoflavone intake for bone-sparing effects remains to be determined. Clinical studies thus far performed can be broadly divided into those that have assessed biochemical evidence of reduced bone turnover from measurement of surrogate markers of osteoblast and osteoclast activity, and those that have examined changes in bone mineral density. There are no studies examining effects on fracture rate. This review focuses specifically on the potential influence of phytoestrogens on bone by examining the evidence from 17 in vitro studies of cultured bone cells, 24 in vivo studies of animal models for postmenopausal osteoporosis, 15 human observational/epidemiologic studies, and 17 dietary intervention studies. On balance, the collective data suggest that diets rich in phytoestrogens have bone-sparing effects in the long term, although the magnitude of the effect and the exact mechanism(s) of action are presently elusive or speculative.
Collapse
Affiliation(s)
- Kenneth D R Setchell
- Department of Pediatrics, Clinical Mass Spectrometry, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
31
|
Fitzpatrick LA. Phytoestrogens--mechanism of action and effect on bone markers and bone mineral density. Endocrinol Metab Clin North Am 2003; 32:233-52, viii. [PMID: 12699301 DOI: 10.1016/s0889-8529(02)00085-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dietary supplements, especially those containing phytoestrogens, frequently are used to either promote health or prevent disease. An estimated 20 billion dollars was spent on dietary supplements in the year 2000. Approximately 40% to 55% of Americans use supplements on a regular basis and 24% of these supplements contain herbs. Phytoestrogens are defined as any compound that is structurally or functionally related to ovarian or placental estrogens and their active metabolites. These compounds are widely used for various disorders related to women's health.
Collapse
Affiliation(s)
- Lorraine A Fitzpatrick
- Division of Endocrinology, Metabolism, Diabetes Nutrition & Internal Medicine, Department of Medicine, Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Joseph 5-194, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|