1
|
Proinflammatory Cytokines and Potassium Channels in the Kidney. Mediators Inflamm 2015; 2015:362768. [PMID: 26508816 PMCID: PMC4609835 DOI: 10.1155/2015/362768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/09/2015] [Indexed: 01/08/2023] Open
Abstract
Proinflammatory cytokines affect several cell functions via receptor-mediated processes. In the kidney, functions of transporters and ion channels along the nephron are also affected by some cytokines. Among these, alteration of activity of potassium ion (K(+)) channels induces changes in transepithelial transport of solutes and water in the kidney, since K(+) channels in tubule cells are indispensable for formation of membrane potential which serves as a driving force for the transepithelial transport. Altered K(+) channel activity may be involved in renal cell dysfunction during inflammation. Although little information was available regarding the effects of proinflammatory cytokines on renal K(+) channels, reports have emerged during the last decade. In human proximal tubule cells, interferon-γ showed a time-dependent biphasic effect on a 40 pS K(+) channel, that is, delayed suppression and acute stimulation, and interleukin-1β acutely suppressed the channel activity. Transforming growth factor-β1 activated KCa3.1 K(+) channel in immortalized human proximal tubule cells, which would be involved in the pathogenesis of renal fibrosis. This review discusses the effects of proinflammatory cytokines on renal K(+) channels and the causal relationship between the cytokine-induced changes in K(+) channel activity and renal dysfunction.
Collapse
|
2
|
Carrisoza-Gaytán R, Salvador C, Diaz-Bello B, Escobar LI. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron. J Mol Histol 2014; 45:583-97. [PMID: 24948003 DOI: 10.1007/s10735-014-9581-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico
| | | | | | | |
Collapse
|
3
|
Nakamura K, Komagiri Y, Kubokawa M. Interleukin-1β suppresses activity of an inwardly rectifying K+ channel in human renal proximal tubule cells. J Physiol Sci 2013; 63:377-87. [PMID: 23797607 PMCID: PMC10717820 DOI: 10.1007/s12576-013-0275-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
We investigated the effect of interleukin-1β (IL-1β) on activity of an inwardly rectifying K+ channel in cultured human proximal tubule cells (RPTECs), using the patch-clamp technique and Fura-2 Ca2+ imaging. IL-1β (15 pg/ml) acutely reduced K+ channel activity in cell-attached patches. This effect was blocked by the IL-1 receptor antagonist (20 ng/ml), an inhibitor of phospholipase C, neomycin (300 μM), and an inhibitor of protein kinase C (PKC), GF109203X (500 nM). The Fura-2 Ca2+ imaging revealed that IL-1β increased intracellular Ca2+ concentration even after removal of extracellular Ca2+, which was blocked by an inhibitor of inositol 1,4,5-trisphosphate receptors, 2-aminoethoxydiphenyl borate (2-APB, 1 μM). Moreover, IL-1β suppressed channel activity in the presence of 2-APB without extracellular Ca2+. These results suggest that IL-1β suppresses K+ channel activity in RPTECs through binding to its specific receptor and activation of the PKC pathway even though intracellular Ca2+ does not increase.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Department of Physiology, Iwate Medical University School of Medicine, 2-1-1 Nishitokuta, Yahaba, 028-3694 Japan
| | - You Komagiri
- Department of Physiology, Iwate Medical University School of Medicine, 2-1-1 Nishitokuta, Yahaba, 028-3694 Japan
| | - Manabu Kubokawa
- Department of Physiology, Iwate Medical University School of Medicine, 2-1-1 Nishitokuta, Yahaba, 028-3694 Japan
| |
Collapse
|
4
|
Nakamura K, Komagiri Y, Kubokawa M. Effects of cytokines on potassium channels in renal tubular epithelia. Clin Exp Nephrol 2011; 16:55-60. [PMID: 22042037 DOI: 10.1007/s10157-011-0490-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/03/2011] [Indexed: 12/11/2022]
Abstract
Renal tubular potassium (K(+)) channels play important roles in the formation of cell-negative potential, K(+) recycling, K(+) secretion, and cell volume regulation. In addition to these physiological roles, it was reported that changes in the activity of renal tubular K(+) channels were involved in exacerbation of renal cell injury during ischemia and endotoxemia. Because ischemia and endotoxemia stimulate production of cytokines in immune cells and renal tubular cells, it is possible that cytokines would affect K(+) channel activity. Although the regulatory mechanisms of renal tubular K(+) channels have extensively been studied, little information is available about the effects of cytokines on these K(+) channels. The first report was that tumor necrosis factor acutely stimulated the single channel activity of the 70 pS K(+) channel in the rat thick ascending limb through activation of tyrosine phosphatase. Recently, it was also reported that interferon-γ (IFN-γ) and interleukin-1β (IL-1β) modulated the activity of the 40 pS K(+) channel in cultured human proximal tubule cells. IFN-γ exhibited a delayed suppression and an acute stimulation of K(+) channel activity, whereas IL-1β acutely suppressed the channel activity. Furthermore, these cytokines suppressed gene expression of the renal outer medullary potassium channel. The renal tubular K(+) channels are functionally coupled to the coexisting transporters. Therefore, the effects of cytokines on renal tubular transporter activity should also be taken into account, when interpreting their effects on K(+) channel activity.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Department of Physiology, Iwate Medical University School of Medicine, 2-1-1 Nishitokuta, Yahaba, 028-3694, Japan
| | | | | |
Collapse
|
5
|
Nakamura K, Komagiri Y, Kojo T, Kubokawa M. Delayed and acute effects of interferon-gamma on activity of an inwardly rectifying K+ channel in cultured human proximal tubule cells. Am J Physiol Renal Physiol 2008; 296:F46-53. [PMID: 18945831 DOI: 10.1152/ajprenal.00127.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of an inwardly rectifying K(+) channel in cultured human renal proximal tubule cells (RPTECs) is stimulated and inhibited by nitric oxide (NO) at low and high concentrations, respectively. In this study, we investigated the effects of IFN-gamma, one of the cytokines which affect the expression of inducible NO synthase (iNOS), on intracellular NO and channel activity of RPTECs, using RT-PCR, NO imaging, and the cell-attached mode of the patch-clamp technique. Prolonged incubation (24 h) of cells with IFN-gamma (20 ng/ml) enhanced iNOS mRNA expression and NO production. In these cells, a NOS inhibitor, N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 microM), elevated channel activity, suggesting that NO production was so high as to suppress the channel. This indicated that IFN-gamma would chronically suppress channel activity by enhancing NO production. Acute effects of IFN-gamma was also examined in control cells. Simple addition of IFN-gamma (20 ng/ml) to the bath acutely stimulated channel activity, which was abolished by inhibitors of IFN-gamma receptor-associated Janus-activated kinase [P6 (1 microM) and AG490 (10 microM)]. However, l-NAME did not block the acute effect of IFN-gamma. Indeed, IFN-gamma did not acutely affect NO production. Moreover, the acute effect was not blocked by inhibition of PKA, PKG, and phosphatidylinositol 3-kinase (PI3K). We conclude that IFN-gamma exerted a delayed suppressive effect on K(+) channel activity by enhancing iNOS expression and an acute stimulatory effect, which was independent of either NO pathways or phosphorylation processes mediated by PKA, PKG, and PI3K in RPTECs.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Dept. of Physiology, Iwate Medical Univ. School of Medicine, 19-1 Uchimaru, Morioka, 020-8505 Japan
| | | | | | | |
Collapse
|
6
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
7
|
Nakamura K, Hirano J, Kubokawa M. Regulation of an inwardly rectifying K+ channel by nitric oxide in cultured human proximal tubule cells. Am J Physiol Renal Physiol 2004; 287:F411-7. [PMID: 15140759 DOI: 10.1152/ajprenal.00014.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of nitric oxide (NO) on activity of the inwardly rectifying K(+) channel in cultured human proximal tubule cells, using the cell-attached mode of the patch-clamp technique. An inhibitor of NO synthases, N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM), reduced channel activity, which was restored by an NO donor, sodium nitroprusside (SNP; 10 microM) or 8-bromo-cGMP (8-BrcGMP; 100 microM). However, SNP failed to activate the channel in the presence of an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM). Similarly, the SNP effect was abolished by a protein kinase G (PKG)-specific inhibitor, KT-5823 (1 microM), but not by a protein kinase A-specific inhibitor, KT-5720 (500 nM). Another NO donor, S-nitroso-N-acetyl-D,L-penicillamine (10 microM), mimicked the SNP-induced channel activation. In contrast to the stimulatory effect of SNP at a low dose (10 microM), a higher dose of SNP (1 mM) reduced channel activity, which was not restored by 8-BrcGMP. Recordings of membrane potential with the slow whole cell configuration demonstrated that l-NAME (100 microM) and the high dose of SNP (1 mM) depolarized the cell by 10.1 +/- 2.6 and 9.2 +/- 1.0 mV, respectively, whereas the low dose of SNP (10 microM) hyperpolarized it by 7.1 +/- 0.7 mV. These results suggested that the endogenous NO would contribute to the maintenance of basal activity of this K(+) channel and hence the potential formation via a cGMP/PKG-dependent mechanism, whereas a high dose of NO impaired channel activity independent of cGMP/PKG-mediated processes.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Department of Physiology II, Iwate Medical University School of Medicine, Morioka, 020-8505 Japan
| | | | | |
Collapse
|
8
|
Nakamura K, Hirano J, Itazawa SI, Kubokawa M. Protein kinase G activates inwardly rectifying K(+) channel in cultured human proximal tubule cells. Am J Physiol Renal Physiol 2002; 283:F784-91. [PMID: 12217870 DOI: 10.1152/ajprenal.00023.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An ATP-regulated inwardly rectifying K(+) channel, whose activity is enhanced by PKA, is present in the plasma membrane of cultured human proximal tubule cells. In this study, we investigated the effects of PKG on this K(+) channel, using the patch-clamp technique. In cell-attached patches, bath application of a membrane-permeant cGMP analog, 8-bromoguanosine 3',5'-monophosphate (8-BrcGMP; 100 microM), stimulated channel activity, whereas application of a PKG-specific inhibitor, KT-5823 (1 microM), reduced the activity. Channel activation induced by 8-BrcGMP was observed even in the presence of a PKA-specific inhibitor, KT-5720 (500 nM), which was abolished by KT-5823. Direct effects of cGMP and PKG were examined with inside-out patches in the presence of 1 mM MgATP. Although cytoplasmic cGMP (100 microM) alone had little effect on channel activity, subsequent addition of PKG (500 U/ml) enhanced it. Furthermore, bath application of atrial natriuretic peptide (ANP; 20 nM) in cell-attached patches stimulated channel activity, which was blocked by KT-5823. In conclusion, cGMP/PKG-dependent processes participate in activating the ATP-regulated K(+) channel and producing the stimulatory effect of ANP on channel activity.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Department of Physiology II, Iwate Medical University School of Medicine, Morioka 020-8505, Japan
| | | | | | | |
Collapse
|