1
|
Kang JH, Park JE, Dagoon J, Masson SWC, Merry TL, Bremner SN, Dent JR, Schenk S. Sirtuin 1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. J Appl Physiol (1985) 2021; 130:1893-1902. [PMID: 33886385 DOI: 10.1152/japplphysiol.00065.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While it has long been known that contraction robustly stimulates skeletal muscle glucose uptake, the molecular steps regulating this increase remain incompletely defined. The mammalian ortholog of Sir2, sirtuin 1 (SIRT1), is an NAD+-dependent protein deacetylase that is thought to link perturbations in energy flux associated with exercise to subsequent cellular adaptations. Nevertheless, its role in contraction-stimulated glucose uptake has not been described. The objective of this study was to determine the importance of SIRT1 to contraction-stimulated glucose uptake in mouse skeletal muscle. Using a radioactive 2-deoxyglucose uptake (2DOGU) approach, we measured ex vivo glucose uptake in unstimulated (rested) and electrically stimulated (100 Hz contraction every 15 s for 10 min; contracted) extensor digitorum longus (EDL) and soleus from ∼15-wk-old male and female mice with muscle-specific knockout of SIRT1 deacetylase activity and their wild-type littermates. Skeletal muscle force decreased over the contraction protocol, although there were no differences in the rate of fatigue between genotypes. In EDL and soleus, loss of SIRT1 deacetylase activity did not affect contraction-induced increase in glucose uptake in either sex. Interestingly, the absolute rate of contraction-stimulated 2DOGU was ∼1.4-fold higher in female compared with male mice, regardless of muscle type. Taken together, our findings demonstrate that SIRT1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. Moreover, to our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in mouse skeletal muscle.NEW & NOTEWORTHY Here, we demonstrate that glucose uptake in response to ex vivo contractions is not affected by the loss of sirtuin 1 (SIRT1) deacetylase function in muscle, regardless of sex or muscle type. Interestingly, however, similar to studies on insulin-stimulated glucose uptake, we demonstrate that contraction-stimulated glucose uptake is robustly higher in female compared with the male skeletal muscle. To our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Ji H Kang
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Ji E Park
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jason Dagoon
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
2
|
Ikonomov OC, Sbrissa D, Delvecchio K, Feng HZ, Cartee GD, Jin JP, Shisheva A. Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber-type switching. Am J Physiol Endocrinol Metab 2013; 305:E119-31. [PMID: 23673157 PMCID: PMC3725567 DOI: 10.1152/ajpendo.00030.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolutionarily conserved kinase PIKfyve that synthesizes PtdIns5P and PtdIns(3,5)P₂ has been implicated in insulin-regulated GLUT4 translocation/glucose entry in 3T3-L1 adipocytes. To decipher PIKfyve's role in muscle and systemic glucose metabolism, here we have developed a novel mouse model with Pikfyve gene disruption in striated muscle (MPIfKO). These mice exhibited systemic glucose intolerance and insulin resistance at an early age but had unaltered muscle mass or proportion of slow/fast-twitch muscle fibers. Insulin stimulation of in vivo or ex vivo glucose uptake and GLUT4 surface translocation was severely blunted in skeletal muscle. These changes were associated with premature attenuation of Akt phosphorylation in response to in vivo insulin, as tested in young mice. Starting at 10-11 wk of age, MPIfKO mice progressively accumulated greater body weight and fat mass. Despite increased adiposity, serum free fatty acid and triglyceride levels were normal until adulthood. Together with the undetectable lipid accumulation in liver, these data suggest that lipotoxicity and muscle fiber switching do not contribute to muscle insulin resistance in MPIfKO mice. Furthermore, the 80% increase in total fat mass resulted from increased fat cell size rather than altered fat cell number. The observed profound hyperinsulinemia combined with the documented increases in constitutive Akt activation, in vivo glucose uptake, and gene expression of key enzymes for fatty acid biosynthesis in MPIfKO fat tissue suggest that the latter is being sensitized for de novo lipid anabolism. Our data provide the first in vivo evidence that PIKfyve is essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Han S, Oh KS, Yoon Y, Park JS, Park YS, Han JH, Jeong AL, Lee S, Park M, Choi YA, Lim JS, Yang Y. Herbal extract THI improves metabolic abnormality in mice fed a high-fat diet. Nutr Res Pract 2011; 5:198-204. [PMID: 21779522 PMCID: PMC3133751 DOI: 10.4162/nrp.2011.5.3.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022] Open
Abstract
Target herbal ingredient (THI) is an extract made from two herbs, Scutellariae Radix and Platycodi Radix. It has been developed as a treatment for metabolic diseases such as hyperlipidemia, atherosclerosis, and hypertension. One component of these two herbs has been reported to have anti-inflammatory, anti-hyperlipidemic, and anti-obesity activities. However, there have been no reports about the effects of the mixed extract of these two herbs on metabolic diseases. In this study, we investigated the metabolic effects of THI using a diet-induced obesity (DIO) mouse model. High-fat diet (HFD) mice were orally administered daily with 250 mg/kg of THI. After 10 weeks of treatment, the THI-administered HFD mice showed reduction of body weights and epididymal white adipose tissue weights as well as improved glucose tolerance. In addition, the level of total cholesterol in the serum was markedly reduced. To elucidate the molecular mechanism of the metabolic effects of THI in vitro, 3T3-L1 cells were treated with THI, after which the mRNA levels of adipogenic transcription factors, including C/EBPα and PPARγ, were measured. The results show that the expression of these two transcription factors was down regulated by THI in a dose-dependent manner. We also examined the combinatorial effects of THI and swimming exercise on metabolic status. THI administration simultaneously accompanied by swimming exercise had a synergistic effect on serum cholesterol levels. These findings suggest that THI could be developed as a supplement for improving metabolic status.
Collapse
Affiliation(s)
- Sora Han
- Department of Biological Science, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mazzardo-Martins L, Martins DF, Marcon R, Dos Santos UD, Speckhann B, Gadotti VM, Sigwalt AR, Guglielmo LGA, Santos ARS. High-intensity extended swimming exercise reduces pain-related behavior in mice: involvement of endogenous opioids and the serotonergic system. THE JOURNAL OF PAIN 2010; 11:1384-93. [PMID: 20488763 DOI: 10.1016/j.jpain.2010.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/11/2010] [Accepted: 03/21/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED The present study examined the hyponociceptive effect of swimming exercise in a chemical behavioral model of nociception and the mechanisms involved in this effect. Male mice were submitted to swimming sessions (30 min/d for 5 days). Twenty-four hours after the last session, we noticed that swimming exercise decreased the number of abdominal constriction responses caused by acetic acid compared with the nonexercised group. The hyponociception caused by exercise in the acetic acid test was significantly attenuated by intraperitoneal (i.p.) pretreatment of mice with naloxone (a nonselective opioid receptor antagonist, 1 mg/kg), ρ-chlorophenylalanine methyl ester (PCPA, an inhibitor of serotonin synthesis, 100 mg/kg once a day for 4 consecutive days), and by bilateral adrenalectomy. Collectively, the present results provide experimental evidences indicating for the first time that high-intensity extended swimming exercise reduces pain-related behavior in mice. The mechanisms involve an interaction with opioid and serotonin systems. Furthermore, endogenous opioids released by adrenal glands probably are involved in this effect. PERSPECTIVE Our results indicate that high-intensity extended exercise endogenously controls acute pain by activation of opioidergic and serotonergic pathways. Furthermore, these results support the use of exercise as a nonpharmacological approach for the management of acute pain.
Collapse
Affiliation(s)
- Leidiane Mazzardo-Martins
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|