1
|
Wang Z, Zhong D, Yan T, Zheng Q, Zhou E, Ye Z, He X, Liu Y, Yan J, Yuan Y, Wang Y, Cai X. Stem Cells from Human Exfoliated Deciduous Teeth-Derived Exosomes for the Treatment of Acute Liver Injury and Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17948-17964. [PMID: 40087139 PMCID: PMC11955941 DOI: 10.1021/acsami.4c19748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in regenerative medicine due to their regenerative potential. However, traditional MSC-based therapies are hindered by issues such as microvascular obstruction and low cell survival after transplantation. Exosomes derived from MSCs (MSC-Exo) provide a cell-free, nanoscale alternative, mitigating these risks and offering therapeutic potential for liver diseases. Nonetheless, the functional variability of MSCs from different sources complicates their clinical application. Stem cells derived from human exfoliated deciduous teeth (SHED) offer advantages such as ease of procurement and robust proliferative capacity, but their secretome, particularly SHED-Exo, remains underexplored in the context of liver disease therapy. This study analyzed MSC-Exo from various sources via small RNA sequencing to identify differences in microRNA profiles, aiding in the selection of optimal MSC sources for clinical use. SHED-Exo was subsequently tested in an acute liver injury model, showing notable regenerative effects, including enhanced hepatocyte proliferation, macrophage polarization, and reduced inflammation. Despite strong liver-targeting properties, the rapid hepatic clearance of SHED-Exo limits its effectiveness in chronic liver diseases. To address this challenge, a GelMA-based hydrogel was developed for in situ delivery, ensuring sustained release and enhanced antifibrotic efficacy, providing a promising strategy for chronic liver disease management.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Zhong
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiang Zheng
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Enjie Zhou
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhichao Ye
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoyan He
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yu Liu
- Department
of Cardiac Surgery, Zhejiang University
School of Medicine Sir Run Run Shaw Hospital, Hangzhou 310016, Zhejiang, China
| | - Jianing Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuyang Yuan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yifan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| | - Xiujun Cai
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| |
Collapse
|
2
|
Xu Y, Wang XS, Zhou XL, Lu WM, Tang XK, Jin Y, Ye JS. Mesenchymal stem cell therapy for liver fibrosis need "partner": Results based on a meta-analysis of preclinical studies. World J Gastroenterol 2024; 30:3766-3782. [PMID: 39221071 PMCID: PMC11362880 DOI: 10.3748/wjg.v30.i32.3766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The efficacy of mesenchymal stem cells (MSCs) in treating liver fibrosis has been demonstrated in several clinical studies. However, their low survival and liver implantation rates remain problematic. In recent years, a large number of studies in animal models of liver fibrosis have shown that MSCs combined with drugs can improve the efficacy of MSCs in the treatment of liver fibrosis alone and inhibit its progression to end-stage liver disease. This has inspired new ways of thinking about treating liver fibrosis. AIM To investigate the effectiveness and mechanisms of MSCs combined with drugs in treating liver fibrosis. METHODS Data sources included four electronic databases and were constructed until January 2024. The subjects, interventions, comparators, outcomes, and study design principle were used to screen the literature, and the quality of the literature was evaluated to assess the risk of bias. Relevant randomised controlled trials were selected, and the final 13 studies were included in the final study. RESULTS A total of 13 studies were included after screening. Pooled analysis showed that MSCs combined with drug therapy significantly improved liver function, promoted the repair of damaged liver tissues, reduced the level of liver fibrosis-related indexes, and effectively ameliorated hepatic fibrosis by modulating the hepatic inflammatory microenvironment, promoting the homing of MSCs, and regulating the relevant signaling pathways, and the treatment efficacy was superior to MSCs alone. However, the combined treatment statistics showed no ame-lioration in serum albumin levels (standardized mean difference = 0.77, 95% confidence interval: -0.13 to 1.68, P = 0.09). CONCLUSION In conclusion, MSCs combined with drugs for treating liver fibrosis effectively make up for the shortcomings of MSCs in their therapeutic effects. However, due to the different drugs, the treatment mechanism and effect also differ. Therefore, more randomized controlled trials are needed to compare the therapeutic efficacy of different drugs in combination with MSCs, aiming to select the "best companion" of MSCs in treating hepatic fibrosis.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xue-Song Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiao-Lei Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Wen-Ming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xing-Kun Tang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Jun-Song Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cere-brovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
3
|
Xu Y, Zhou X, Wang X, Jin Y, Zhou L, Ye J. Progress of mesenchymal stem cells (MSCs) & MSC-Exosomes combined with drugs intervention in liver fibrosis. Biomed Pharmacother 2024; 176:116848. [PMID: 38834005 DOI: 10.1016/j.biopha.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Liver fibrosis is an intrahepatic chronic damage repair response caused by various reasons such as alcoholic liver, fatty liver, viral hepatitis, autoimmune diseases, etc., and is closely related to the progression of liver disease. Currently, the mechanisms of liver fibrosis and its treatment are hot research topics in the field of liver disease remedy. Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential, which can ameliorate fibrosis through hepatic-directed differentiation, paracrine effects, and immunomodulation. However, the low inner-liver colonization rate, low survival rate, and short duration of intervention after stem cell transplantation have limited their wide clinical application. With the intensive research on liver fibrosis worldwide, it has been found that MSCs and MSCs-derived exosomes combined with drugs have shown better intervention efficiency than utilization of MSCs alone in many animal models of liver fibrosis. In this paper, we review the interventional effects and mechanisms of mesenchymal stem cells and their exosomes combined with drugs to alleviate hepatic fibrosis in vivo in animal models in recent years, which will provide new ideas to improve the efficacy of mesenchymal stem cells and their exosomes in treating hepatic fibrosis in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China.
| |
Collapse
|
4
|
Xu W, Mo W, Han D, Dai W, Xu X, Li J, Xu X. Hepatocyte-derived exosomes deliver the lncRNA CYTOR to hepatic stellate cells and promote liver fibrosis. J Cell Mol Med 2024; 28:e18234. [PMID: 38520214 PMCID: PMC10960169 DOI: 10.1111/jcmm.18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.
Collapse
Affiliation(s)
- Wenqiang Xu
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Wenhui Mo
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Dengyu Han
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Weiqi Dai
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Xiaorong Xu
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jingjing Li
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|