1
|
Xia Q, Zhou S, Zhou J, Zhao X, Saif MS, Wang J, Hasan M, Zhao M, Liu Q. Recent Advances and Challenges for Biological Materials in Micro/Nanocarrier Synthesis for Bone Infection and Tissue Engineering. ACS Biomater Sci Eng 2025; 11:1945-1969. [PMID: 40067283 DOI: 10.1021/acsbiomaterials.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Roughly 1.71 billion people worldwide suffer from large bone abnormalities, which are the primary cause of disability. Traditional bone grafting procedures have several drawbacks that impair their therapeutic efficacy and restrict their use in clinical settings. A great deal of work has been done to create fresh, more potent strategies. Under these circumstances, a crucial technique for the regeneration of major lesions has emerged: bone tissue engineering (BTE). BTE involves the use of biomaterials that can imitate the natural design of bone. To yet, no biological material has been able to fully meet the parameters of the perfect implantable material, even though several varieties have been created and investigated for bone regeneration. Against this backdrop, researchers have focused a great deal of interest over the past few years on the subject of nanotechnology and the use of nanostructures in regenerative medicine. The ability to create nanoengineered particles that can overcome the current constraints in regenerative strategies─such as decreased cell proliferation and differentiation, insufficient mechanical strength in biological materials, and insufficient production of extrinsic factors required for effective osteogenesis has revolutionized the field of bone and tissue engineering. The effects of nanoparticles on cell characteristics and the application of biological materials for bone regeneration are the main topics of our review, which summarizes the most recent in vitro and in vivo research on the application of nanotechnology in the context of BTE.
Collapse
Affiliation(s)
- Qipeng Xia
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Shuyan Zhou
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jingya Zhou
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- College of Acupuncture and Massage, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Xia Zhao
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, PR China
| | - Muhammad Saqib Saif
- Department of Biochemistry, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jianping Wang
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Min Zhao
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Qiang Liu
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
2
|
Nazir MA, Hasan M, Mustafa G, Tariq T, Ahmed MM, Golzari Dehno R, Ghorbanpour M. Zinc oxide nano-fertilizer differentially effect on morphological and physiological identity of redox-enzymes and biochemical attributes in wheat (Triticum aestivum L.). Sci Rep 2024; 14:13091. [PMID: 38849601 PMCID: PMC11161468 DOI: 10.1038/s41598-024-63987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.
Collapse
Affiliation(s)
- Muneeba Anum Nazir
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Tuba Tariq
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotinformatics, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rosa Golzari Dehno
- Department of Agriculture, Chalus Branch, Islamic Azad University, Chalus, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
3
|
Yu H, Saif MS, Hasan M, Zafar A, Zhao X, Waqas M, Tariq T, Xue H, Hussain R. Designing a Silymarin Nanopercolating System Using CME@ZIF-8: An Approach to Hepatic Injuries. ACS OMEGA 2023; 8:48535-48548. [PMID: 38144097 PMCID: PMC10734040 DOI: 10.1021/acsomega.3c08494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
It is commonly known that silymarin, a phytoconstituent obtained from the Silybum marianum plant, has hepatoprotective and antioxidative properties. However, its low oral bioavailability and poor water solubility negatively impact its therapeutic efficacy. The goal of the present study was to determine the efficiency of the Cordia myxa extract-based synthesized zeolitic imidazole metal-organic framework (CME@ZIF-8 MOF) for increasing silymarin's bioavailability. A coprecipitation technique was used to synthesize the CME@ZIF-8 and polyethylene glycol-coated silymarin-loaded MOFs (PEG-Sily@CME@ZIF-8) and a complete factorial design was used to optimize them. The crystalline size of CME@ZIF-8 was 14.7 nm and the size of PEG-Sily@CME@ZIF-8 was 17.39 nm. The loading percentage of the silymarin drug in CME@ZIF-8 was 33.5%. The optimized formulations were then characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, Fourier transform IR spectroscopy, surface morphology, gas chromatography-mass spectrometry, and drug release in an in vitro medium. Additionally, a rat model was used to investigate the optimized formulation's in vivo hepatoprotective effectiveness. The synthesized silymarin-loaded CME@ZIF-8 MOFs were distinct particles with a porous, spongelike shape and a diameter of (size) nm. Furthermore, the designed silymarin-loaded PEG-Sily@CME@ZIF-8 MOF formulation exhibited considerable silymarin release from the synthesized formula in dissolution investigations. The in vivo evaluation studies demonstrated that the prepared PEG-Sily@CME@ZIF-8 MOFs effectively exhibited a hepatoprotective effect in comparison with free silymarin in a CCl4-based induced-hepatotoxicity rat model via ameliorating the normal antioxidant enzyme levels and restoring the cellular abnormalities produced by CCl4 toxication. In combination, biologically produced CME@ZIF-8 may promise to be a viable biologically based nanocarrier that can enhance the loading and release of silymarin medication, which has low solubility in water.
Collapse
Affiliation(s)
- Hui Yu
- College
of Science, Beihua University, Jilin 132013, P. R. China
| | - Muhammad Saqib Saif
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Ayesha Zafar
- School
of Engineering, Royal Melbourne Institute
of Technology (RMIT) University, Melbourne 3001, Australia
| | - Xi Zhao
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Muhammad Waqas
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Riaz Hussain
- Faculty
of Veterinary and Animal Sciences, Department of Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
4
|
Hamed K, El-Fiky SA, M Gawish A, R H Mohamed H, Khalil WKB, Huang X, Hasan M, Zafar A, Caprioli G. Assessing the Efficacy of Fenugreek Saponin Nanoparticles in Attenuating Nicotine-Induced Hepatotoxicity in Male Rats. ACS OMEGA 2023; 8:42722-42731. [PMID: 38024695 PMCID: PMC10653053 DOI: 10.1021/acsomega.3c05526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
During smoking, nicotine, the most bountiful compound in cigarettes, is absorbed into the body by the lungs and quickly metabolized in the liver, causing three major adverse impacts such as toxic, neoplastic, and immunomodulatory effects. Saponins extracted from several plants are reported to exhibit various biological actions, such as anticancer effects. So, the potential protective effect of fenugreek saponin and nanofenugreek saponin against toxicity induced by nicotine in male rats was investigated in this study. Animals were exposed to nicotine (1.5 mg/kg/day) and/or treated with fenugreek saponin (25, 50, and 100 mg/kg/day) and nanofenugreek saponin (20, 40, and 80 mg/kg/day). Comet assays, histopathological examination, and analyses for the expression levels of glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) genes in liver tissues as well as the activity of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were conducted. The results revealed that nicotine treatment induced a significant increase in DNA damage, decrease in the expression levels of (GLAST) and (GLT-1) genes, and increase in histopathological alterations in liver tissues. Moreover, nicotine treatment induced a significant reduction in the activity of antioxidant enzymes GPx and GST. On the other hand, administration of fenugreek saponin or nanofenugreek saponin with nicotine significantly decreased the DNA damage, increased the expression levels of (GLAST) and (GLT-1) genes, and decreased histopathological alterations in liver tissues. Additionally, a significant increase in the activities of GPx and GST was observed. The results suggested that DNA damage and histological injuries induced by nicotine were decreased by the administration of fenugreek saponin or nanofenugreek saponin; thus, fenugreek saponin and nanofenugreek saponin can be used as ameliorative agents against nicotine toxicity.
Collapse
Affiliation(s)
- Karima
A. Hamed
- Department
of Cell Biology, National Research Centre, 33 El-Bohous St, 12622 Dokki, Giza, P.O. 12622, Egypt
| | - Saima A. El-Fiky
- Department
of Cell Biology, National Research Centre, 33 El-Bohous St, 12622 Dokki, Giza, P.O. 12622, Egypt
| | - Azza M Gawish
- Department
of Zoology, Faculty of Science, Cairo University, Cairo 12622, Giza, Egypt
| | - Hanan R H Mohamed
- Department
of Zoology, Faculty of Science, Cairo University, Cairo 12622, Giza, Egypt
| | - Wagdy K. B. Khalil
- Department
of Zoology, Faculty of Science, Cairo University, Cairo 12622, Giza, Egypt
| | - Xue Huang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Murtaza Hasan
- Faculty
of Biological and Chemical Science, Department of Biotechnology, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Ayesha Zafar
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing 510225, P. R. China
| | - Giovanni Caprioli
- Chemistry
Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino 62032, Italy
| |
Collapse
|
5
|
Sayaf AM, Ahmad H, Aslam MA, Ghani SA, Bano S, Yousafi Q, Suleman M, Khan A, Yeoh KK, Wei DQ. Pharmacotherapeutic Potential of Natural Products to Target the SARS-CoV-2 PLpro Using Molecular Screening and Simulation Approaches. Appl Biochem Biotechnol 2023; 195:6959-6978. [PMID: 36961512 PMCID: PMC10037394 DOI: 10.1007/s12010-023-04466-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Because of the essential role of PLpro in the regulation of replication and dysregulation of the host immune sensing, it is considered a therapeutic target for novel drug development. To reduce the risk of immune evasion and vaccine effectiveness, small molecular therapeutics are the best complementary approach. Hence, we used a structure-based drug-designing approach to identify potential small molecular inhibitors for PLpro of SARS-CoV-2. Initial scoring and re-scoring of the best hits revealed that three compounds NPC320891 (2,2-Dihydroxyindene-1,3-Dione), NPC474594 (Isonarciclasine), and NPC474595 (7-Deoxyisonarciclasine) exhibit higher docking scores than the control GRL0617. Investigation of the binding modes revealed that alongside the essential contacts, i.e., Asp164, Glu167, Tyr264, and Gln269, these molecules also target Lys157 and Tyr268 residues in the active site. Moreover, molecular simulation demonstrated that the reported top hits also possess stable dynamics and structural packing. Furthermore, the residues' flexibility revealed that all the complexes demonstrated higher flexibility in the regions 120-140, 160-180, and 205-215. The 120-140 and 160-180 lie in the finger region of PLpro, which may open/close during the simulation to cover the active site and push the ligand inside. In addition, the total binding free energy was reported to be - 32.65 ± 0.17 kcal/mol for the GRL0617-PLpro, for the NPC320891-PLpro complex, the TBE was - 35.58 ± 0.14 kcal/mol, for the NPC474594-PLpro, the TBE was - 43.72 ± 0.22 kcal/mol, while for NPC474595-PLpro complex, the TBE was calculated to be - 41.61 ± 0.20 kcal/mol, respectively. Clustering of the protein's motion and FEL further revealed that in NPC474594 and NPC474595 complexes, the drug was seen to have moved inside the binding cavity along with the loop in the palm region harboring the catalytic triad, thus justifying the higher binding of these two molecules particularly. In conclusion, the overall results reflect favorable binding of the identified hits strongly than the control drug, thus demanding in vitro and in vivo validation for clinical purposes.
Collapse
Affiliation(s)
- Abrar Mohammad Sayaf
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM George Town, Penang Malaysia
| | - Hassaan Ahmad
- Rawalpindi Medical University, Chamanzar Colony, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Ammar Aslam
- Rawalpindi Medical University, Chamanzar Colony, Rawalpindi, Punjab 46000, Pakistan
| | | | - Saira Bano
- Department of Botany, University of Okara, Okara, Punjab Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad-Sahiwal Campus, Sahiwal, Punjab Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
- Zhongjing Research and Industrialization, Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006 People’s Republic of China
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM George Town, Penang Malaysia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
- Zhongjing Research and Industrialization, Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006 People’s Republic of China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center On Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055 People’s Republic of China
| |
Collapse
|
6
|
Hasan M, Zafar A, Jabbar M, Tariq T, Manzoor Y, Ahmed MM, Hassan SG, Shu X, Mahmood N. Trident Nano-Indexing the Proteomics Table: Next-Version Clustering of Iron Carbide NPs and Protein Corona. Molecules 2022; 27:molecules27185754. [PMID: 36144499 PMCID: PMC9500999 DOI: 10.3390/molecules27185754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.
Collapse
Affiliation(s)
- Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Ayesha Zafar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Maryum Jabbar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yasmeen Manzoor
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Nasir Mahmood
- School of Science, RMIT University, Victoria 3000, Australia
- Correspondence: (M.H.); (X.S.); (N.M.)
| |
Collapse
|
7
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Multiplexing surface anchored functionalized iron carbide nanoparticle: A low molecular weight proteome responsive nano-tracer. Colloids Surf B Biointerfaces 2021; 203:111746. [PMID: 33839473 DOI: 10.1016/j.colsurfb.2021.111746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Harvesting the low molecular weight (LMW) proteins from the cellular exudates is a big challenge for early disease detection. Here, we introduce a unique probe composed of surface-functionalized Fe2C NPs with different functional groups to harvest, identify and profile differentially expressed biomarker proteins. Three different functionalization of Fe2C NPs with Fe2C@NH2, Fe2C@COOH and Fe2C@PEG enabled to harvest 119 differentially expressed proteins from HeLa cell exudates. Among these proteins, 57 were LMW which 82.46 % were up-regulated and 17.54 % were down-regulated. The Fe2C@NH2 were able to separate 60S ribosomal proteins L7a, and L11, and leucine-rich repeat-containing protein 59. These proteins play a vital role in the maturation of large subunit ribosomal ribonucleic acid, mRNA splicing via spliceosome and cancer cell inhibitor, respectively. While, Fe2C@COOH identifies the 60S ribosomal protein types L7, 40S ribosomal protein S11, and 60S ribosomal protein L24. These proteins were important for large ribosomal subunit biogenesis, translational initiation, and assembly of large subunit precursor of pre-ribosome. Finally, the Fe2C@PEG extracted 40S ribosomal protein S2, splicing factor, arginine/serine-rich and 40S ribosomal protein S4, X isoform which were responsible for nonsense-mediated decay, oligodendrocyte differentiation and multicellular organism development. Thus, these results help us in defining oncogenic biomarkers for early disease detection.
Collapse
|