1
|
Frost GB, Liu Y, Kron SJ, Scheidt KA. Telomerase reverse transcriptase degradation via a rationally designed covalent proteolysis targeting chimera. Bioorg Med Chem Lett 2025:130286. [PMID: 40412449 DOI: 10.1016/j.bmcl.2025.130286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Expression of telomerase reverse transcriptase (TERT) is a hallmark of cancer, maintaining telomere integrity to enable replicative immortality. However, TERT also serves multiple enzyme-dependent and -independent functions to support cancer growth and survival, including enhanced DNA damage response. Agents that inhibit TERT reverse transcriptase activity prevent telomere elongation but may fail to limit other TERT functions that mediate cancer therapy resistance. Thus, we applied structure-based design, modular synthesis, and biochemical assays towards developing a proteolysis targeting chimera (PROTAC) to drive proteasomal degradation of TERT in cancer cells. This yielded NU-PRO-1, a PROTAC linking the TERT active site-targeted covalent inhibitor NU-1 to the VHL E3-ligase ligand (S,R,S)-AHPC. Applied to cancer cells, NU-PRO-1 induced transient VHL- and proteasome-dependent TERT degradation. NU-PRO-1 did not induce DNA damage on its own but acted to further delay DNA repair after irradiation compared to NU-1. TERT-degrading PROTACs provide novel chemical probes of TERT's non-catalytic functions and may overcome the limitations of current telomerase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - Yue Liu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Stephen J Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, United States of America.
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America; Robert. H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, United States of America.
| |
Collapse
|
2
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Sharma V, Dhawan S, Kumar A, Kaur J. P19 a Parthenin Analog Induces Cell Lineage Dependent Apoptotic and Immunomodulatory Signaling in Acute Lymphoid Leukemia Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:1-17. [PMID: 37942260 PMCID: PMC10629723 DOI: 10.22088/ijmcm.bums.12.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Leukemia is a type of cancer that affects the blood and bone marrow. Acute lymphoid leukaemia, also known as ALL, is regarded as one of the deadliest forms of cancer. Due to the rapid increase in various cancer cases and the development of resistance in cancer cells, it is necessary to identify novel lead molecules with more potent anticancer properties. There is a growing interest in using herbal products/analogs as multi-component agents (as anticancer agents and immunomodulators) for cancer treatment. In the present investigation, an attempt has been made to explore the anticancer and immunomodulatory activity of P19, an analog of parthenin in ALL. P19 was reported to exhibit anticancer efficacy by triggering apoptotic signaling events in human leukaemia HL-60 cells by significant NO production. In contrast to this finding, ROS and NO were not required for P19-mediated apoptosis in Raji cells. The mechanism of action of P19 was observed to be cancer cell lineage dependent. P19 demonstrated very effective anticancer properties against ALL (IC50 3µM). Molecular investigations revealed that P19 induced mitochondrion mediated apoptosis by Bax localization to mitochondria and enhanced cytosolic calcium in the cytoplasm. Further activation of the caspase 3, caspase 8 and PARP cleavage suggested the involvement of the caspase-mediated apoptosis. Anti-proliferative activity revealed the telomerase inhibition and cell cycle arrest in G0/G1 phase after P19 treatment. Immunomodulatory effects of the P19 revealed the enhanced INFɣ and NO production in Jurkat and THP cells. Owing to its antiproliferative and immunomodulatory potential against leukemia cells P19 can further be explored as effective therapeutics against leukemia.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Samriti Dhawan
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India.
| | - Ajay Kumar
- Pharmacology Division, Indian Institute of Integrative Medicine, Jammu, India.
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Alexander A, Pillai AS, Akash BA, Ananthi N, Pal H, Enoch IV, Sayed M. Supramolecular association of a diguanidine derivative with a porphyrin-cyclodextrin conjugate and its binding to G-Quadruplex DNA. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Monsen RC, Maguire JM, DeLeeuw LW, Chaires JB, Trent JO. Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex. PLoS One 2022; 17:e0270165. [PMID: 35709230 PMCID: PMC9202945 DOI: 10.1371/journal.pone.0270165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.
Collapse
Affiliation(s)
- Robert C. Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jon M. Maguire
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Lynn W. DeLeeuw
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jonathan B. Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JBC); (JOT)
| | - John O. Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JBC); (JOT)
| |
Collapse
|
6
|
Zhang R, Zhang R, Zhao C, Xu X. A DNA tetrahedron docking assembly for imaging telomerase activity in cancerous cells. Anal Chim Acta 2022; 1193:339395. [DOI: 10.1016/j.aca.2021.339395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/01/2022]
|
7
|
Zhang R, Zhang R, Jiang W, Xu X. A multicolor DNA tetrahedron nanoprobe for analyzing human telomerase in living cells. Chem Commun (Camb) 2021; 57:2188-2191. [PMID: 33527950 DOI: 10.1039/d0cc07893j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, we report the in situ analysis of human telomerase by a multicolor DNA tetrahedron nanoprobe. The elongated telomeric repeats can hybridize with settled molecular beacons in order, accompanied by sequentially lighted up fluorescence. Imaging telomerase activity, real-time monitoring telomerase action and determining product length distribution in living cells are realized. It detects multiple information of intracellular telomerase and provides deeper insights into the function of telomerase.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | | | | | | |
Collapse
|
8
|
Ahsan MJ. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev Med Chem 2021; 22:164-197. [PMID: 33634756 DOI: 10.2174/1389557521666210226145837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. OBJECTIVES The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. METHODS The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. RESULTS 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. CONCLUSION The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039. India
| |
Collapse
|
9
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
10
|
Monsen RC, DeLeeuw L, Dean WL, Gray RD, Sabo T, Chakravarthy S, Chaires JB, Trent JO. The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res 2020; 48:5720-5734. [PMID: 32083666 PMCID: PMC7261196 DOI: 10.1093/nar/gkaa107] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT promoter is disputed. One model features a structure with three stacked parallel G-quadruplex units, while another features an unusual duplex hairpin structure adjoined to two stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural biology study designed to distinguish between these possibilities. As part of our study, we designed a sequence with an optimized hairpin structure and show that its biophysical and biochemical properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data obtained with the wild-type sequence. All-atom models for both structures were constructed using molecular dynamics simulations. These models accurately predicted the experimental hydrodynamic properties measured for each structure. We found with certainty that the wild-type hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a compact stacked three-G-quadruplex conformation.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Lynn DeLeeuw
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - T Michael Sabo
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jonathan B Chaires
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Prasad R, Pal D, Mohammad W. Therapeutic Targets in Telomerase and Telomere Biology of Cancers. Indian J Clin Biochem 2020; 35:135-146. [PMID: 32226245 PMCID: PMC7093628 DOI: 10.1007/s12291-020-00876-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeres play an important role to conserve genomic integrity by protecting the ends of chromosomes in normal cells. Since, their progressive shortening during successive cell division which lead to chromosomal instability. Notably, telomere length is perpetuated by telomerase in large majority of cancers, thereby ensure indefinite cell proliferation-a hallmark of cancer-and this unique feature has provided telomerase as the preferred target for drug development in cancer therapeutics. Cancer cells have acquired the potential to have telomere length maintenance by telomerase activation- up-regulation of hTERT gene expression in tumor cells is synchronized by multiple genetic and epigenetic modification mechanisms viz hTERT structural variants, hTERT promoter mutation and epigenetic modifications through hTERT promoter methylation which have been implicated in various cancers initiation and progression. In view of these facts, strategies have been made to target the underlining molecular mechanisms involved in telomerase reactivation as well as of telomere structure with special reference to distortion of sheltrin proteins. This review is focussed on extensive understanding of telomere and telomerase biology. which will provide indispensable informations for enhancing the efficiency of rational anticancer drug design. However, there is also an urgent need for better understanding of cell signalling pathways for alternative lengthening of telomere which is present in telomerase negative cancer for therapeutic targets.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Biochemistry, MM Institute of Medical Science and Research, MM (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Wajid Mohammad
- Department of Biochemistry, MM Institute of Medical Science and Research, MM (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| |
Collapse
|
12
|
Lee YH, Chen YY, Yeh YL, Wang YJ, Chen RJ. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. Int J Mol Sci 2019; 20:ijms20112716. [PMID: 31159515 PMCID: PMC6600253 DOI: 10.3390/ijms20112716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a state of cell cycle arrest characterized by a distinct morphology, gene expression pattern, and secretory phenotype. It can be triggered by multiple mechanisms, including those involved in telomere shortening, the accumulation of DNA damage, epigenetic pathways, and the senescence-associated secretory phenotype (SASP), and so on. In current cancer therapy, cellular senescence has emerged as a potent tumor suppression mechanism that restrains proliferation in cells at risk for malignant transformation. Therefore, compounds that stimulate the growth inhibition effects of senescence while limiting its detrimental effects are believed to have great clinical potential. In this review article, we first review the current knowledge of the pro- and antitumorigeneic functions of senescence and summarize the key roles of telomerase in the regulation of senescence in tumors. Second, we review the current literature regarding the anticancer effects of stilbene compounds that are mediated by the targeting of telomerase and cell senescence. Finally, we provide future perspectives on the clinical utilization of stilbene compounds, especially resveratrol and pterostilbene, as novel cancer therapeutic remedies. We conclude and propose that stilbene compounds may induce senescence and may potentially be used as the therapeutic or adjuvant agents for cancers with high telomerase activity.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| |
Collapse
|
13
|
Takeuchi R, Zou T, Wakahara D, Nakano Y, Sato S, Takenaka S. Cyclic Naphthalene Diimide Dimer with a Strengthened Ability to Stabilize Dimeric G-Quadruplex. Chemistry 2019; 25:8691-8695. [PMID: 31069868 DOI: 10.1002/chem.201901468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/06/2019] [Indexed: 11/08/2022]
Abstract
A new type of dimeric cyclic naphthalene diimide derivatives (cNDI-dimers) carrying varied linker length were designed and synthesized to recognize dimeric G-quadruplex structures. All of the cNDI-dimers exhibited a high preference for recognizing G-quadruplex structures, and significantly enhanced the thermal stability of the dimeric G-quadruplex structure over the cNDI monomer by increasing the melting temperature by more than 23 °C, which indicated the strengthened ability of cNDI dimers for stabilizing dimeric G-quadruplex. cNDI dimers also showed a stronger ability to inhibit telomerase activity and stop telomere DNA elongation than cNDI monomer, which showed an improved anticancer potentiality for further therapeutic application.
Collapse
Affiliation(s)
- Ryusuke Takeuchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Tingting Zou
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Daiki Wakahara
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Yoshifumi Nakano
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Shinobu Sato
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Shigeori Takenaka
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| |
Collapse
|
14
|
Wang Z, Zhao X, Liu Y, Wang T, Li K. New therapeutic strategies based on interference with telomeric DNA synthesis of tumor cells to suppress the growth of tumors. RSC Adv 2018; 8:25001-25007. [PMID: 35542162 PMCID: PMC9082405 DOI: 10.1039/c8ra02599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022] Open
Abstract
An unusual enzyme called telomerase acts on parts of chromosomes known as telomeres. The enzyme has recently been found in many human tumors and is viewed as a new target for tumor therapy. In this research, we chose the analogue of guanine "2',3'-dideoxyguanosine" (ddG) as the telomerase inhibitor and prepared the ddG-loaded cationic nanoliposomes (ddG-Clip) to specifically target the tumor tissue and preferentially occupy the telomerase nucleotide binding site. The mean diameter of ddG-Clip is 101.54 ± 2.60 nm and they are cationically charged with a zeta potential of 34.0 ± 9.43 mV; also, the encapsulation efficiency of ddG-Clip is 53.44% ± 2.29%. In vitro cytotoxicity results show that cationic nanoliposomes by themselves are almost non-toxic, but with the increase in ddG concentration, ddG-Clip has the ability to kill S180 tumor cells. The anti-tumor activity study suggests that ddG-Clip could not only suppress the tumor growth, but also inhibit tumor liver metastasis well. In conclusion, reverse transcriptase inhibitor-loaded cationic nanoliposomes could interfere with the synthesis of telomeric DNA and block abnormal proliferation of tumor cells, therefore achieving tumor apoptosis.
Collapse
Affiliation(s)
- Zhongyan Wang
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Yan Liu
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Ting Wang
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| |
Collapse
|
15
|
Insights into the structural/conformational requirements of cytotoxic oxadiazoles as potential chemotherapeutic target binding agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Gomez DLM, Armando RG, Cerrudo CS, Ghiringhelli PD, Gomez DE. Telomerase as a Cancer Target. Development of New Molecules. Curr Top Med Chem 2017; 16:2432-40. [PMID: 26873194 PMCID: PMC4997958 DOI: 10.2174/1568026616666160212122425] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/15/2015] [Accepted: 10/25/2015] [Indexed: 12/26/2022]
Abstract
Telomeres are the terminal part of the chromosome containing a long repetitive and non-codifying sequence that has as function protecting the chromosomes. In normal cells, telomeres lost part of such repetitive sequence in each mitosis, until telomeres reach a critical point, triggering at that time senescence and cell death. However, in most of tumor cells in each cell division a part of the telomere is lost, however the appearance of an enzyme called telomerase synthetize the segment that just has been lost, therefore conferring to tumor cells the immortality hallmark. Telomerase is significantly overexpressed in 80–95% of all malignant tumors, being present at low levels in few normal cells, mostly stem cells. Due to these characteristics, telomerase has become an attractive target for new and more effective anticancer agents. The capability of inhibiting telomerase in tumor cells should lead to telomere shortening, senescence and apoptosis. In this work, we analyze the different strategies for telomerase inhibition, either in development, preclinical or clinical stages taking into account their strong points and their caveats. We covered strategies such as nucleosides analogs, oligonucleotides, small molecule inhibitors, G-quadruplex stabilizers, immunotherapy, gene therapy, molecules that affect the telomere/telomerase associated proteins, agents from microbial sources, among others, providing a balanced evaluation of the status of the inhibitors of this powerful target together with an analysis of the challenges ahead.
Collapse
Affiliation(s)
| | | | | | | | - D E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology. Quilmes National University, Bernal, Buenos Aires, Argentina. R. Saenz Peña 352, (1876) Buenos Aires, Argentina.
| |
Collapse
|
17
|
RNA interference mediated downregulation of human telomerase reverse transcriptase (hTERT) in LN18 cells. Cytotechnology 2016; 68:2311-2321. [PMID: 27757712 DOI: 10.1007/s10616-016-0025-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) gene is a biomarker for the targeted therapy in various cancers. Presence of increased telomerase activity is a common feature of all cancers including glioblastoma. Both RNA and catalytic subunits of hTERT are the target sites for blocking its activity. The current study focuses on the expression of hTERT in glioblastoma and its regulation using two different novel siRNAs (small interfering RNA). Our patient data demonstrated increased expression of hTERT, which could be correlated with carcinogenesis in glioma. In vitro studies in siRNA transfected LN18 cells confirmed significant cell death (p < 0.05) as evidenced by MTT and trypan blue exclusion assay. These results were further supported by flow cytometry data, which showed significant increase in early and late apoptosis. The hTERT mRNA expression was effectively downregulated by 45 and 39 % with siRNA1 and siRNA2, respectively. These results were further confirmed by immunoblotting analysis (p < 0.05). Our results suggest that both the siRNAs effectively down regulated the expression of hTERT at mRNA and protein levels, thereby decreasing cell viability and proliferation rate. Hence siRNA mediated downregulation of hTERT could be a potential therapeutic avenue in glioblastoma.
Collapse
|
18
|
Mapiye DS, Christoffels AG, Gamieldien J. Identification of phenotype-relevant differentially expressed genes in breast cancer demonstrates enhanced quantile discretization protocol's utility in multi-platform microarray data integration. J Bioinform Comput Biol 2016; 14:1650022. [PMID: 27411306 DOI: 10.1142/s0219720016500220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microarray for transcriptomics experiments often suffer from limited statistical power due to small sample size. Quantile discretization (QD) maps expression values for a sample into a series of equivalently sized 'bins' that represent a discrete numerical range, e.g. [Formula: see text]4 to [Formula: see text]4, which enables normalized data from multiple experiments and/or expression platforms to be combined for re-analysis. We found, however, that informal selection of bin numbers often resulted in loss of the underlying correlation structure in the data through assigning of the same numerical value to genes that are in reality expressed at significantly different levels within a sample. Here we report a procedure for determining an optimal bin number for dataset. Applying this to integrated public breast cancer datasets enabled statistical identification of several differentially expressed tumorigenesis-related genes that were not found when analyzing the individual datasets, and also several cancer biomarkers not previously indicated as having utility in the disease. Notably, differential modulation of translational control and protein synthesis via multiple pathways were found to potentially have central roles in breast cancer development and progression. These findings suggest that our protocol has significant utility in making meaningful novel biomedical discoveries by leveraging the large public expression data repositories.
Collapse
Affiliation(s)
- Darlington S Mapiye
- 1 South African National Bioinformatics Institute/MRC, Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Alan G Christoffels
- 1 South African National Bioinformatics Institute/MRC, Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Junaid Gamieldien
- 1 South African National Bioinformatics Institute/MRC, Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
19
|
Abstract
INTRODUCTION Telomerase is a ribonucleoprotein that catalyses the addition of telomeric repeat sequences (having the sequence 5'-TTAGGG-3' in humans) to the ends of chromosomes. Telomerase activity is detected in most types of human tumours, but it is almost undetectable in normal somatic cells. Therefore, telomerase is a promising therapeutic target. To date, the known inhibitors of telomerase include nucleoside analogues, oligonucleotides and G-quadruplex stabilizers. This review highlights recent advances in our understanding of telomerase inhibitors, the relationships between telomerase inhibitors, cancer, and fields such as inflammation. AREAS COVERED This review summarizes new patents published on telomerase inhibitors from 2010 to 2015. EXPERT OPINION The review provides a brief account of the background, development, and on-going issues involving telomerase inhibitors. In particular, this review emphasizes imetelstat (GRN163L) and some typical G-quadruplex stabilizers that participate in telomerase inhibition. Overall, the research scope of antineoplastic is becoming broader and telomerase inhibitors have been shown to be a promising therapeutic target. Therefore, novel antineoplastic agents with greater activity and higher specificity must be developed.
Collapse
Affiliation(s)
- Ruo-Jun Man
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China.,b Preparatory College Education , Guangxi University for Nationalities , Nanning , People's Republic of China
| | - Long-Wang Chen
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China
| | - Hai-Liang Zhu
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China
| |
Collapse
|
20
|
Inhibition of human telomerase reverse transcriptase in vivo and in vitro for retroviral vector-based antisense oligonucleotide therapy in ovarian cancer. Cancer Gene Ther 2016; 23:36-42. [PMID: 26742579 DOI: 10.1038/cgt.2015.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022]
Abstract
Human telomerase is absent in most normal tissues, but is abnormally activated in all major cancer cells. Telomerase enables tumor cells to maintain telomere length, allowing indefinite replicative capacity. Albeit not sufficient in itself to induce neoplasia, telomerase is believed to be necessary for cancer cells to grow without limit. Studies using an antisense oligonucleotide (ASODN) to the RNA component of telomerase or human telomerase reverse transcriptase (hTERT) demonstrate that telomerase in human tumor lines can be blocked in vivo. Inhibition of hTERT led to telomere shortening and cancer cell death, validating telomerase as a target for anticancer genetic therapy. Varieties of approaches for hTERT inhibition have been investigated. The aim of this study was to analyze the biological activity of ASODN to the hTERT mediated by retrovirus vector, which was used as therapy for ovarian tumor. We constructed and characterized a recombinant retrovirus vector with full-length hTERT antisense complementary DNA. The vector was introduced into ES-2 by lipofectamine-mediated gene transfection. The cellular proliferation and telomerase activity of the transformant cells were retarded. The hTERT gene expression and the telomerase activity of the transformant cells were both decreased. The transformant cells show partial reversion of the malignant phenotype. PT67 cells were also transfected with the recombinant vector and virus-producer cells were generated. The retrovirus-containing supernatant effectively inhibited the growth of human ovarian tumor xenografts in mouse models (subcutaneous tumor model), and enhanced the mouse survival time.
Collapse
|
21
|
Shirgahi Talari F, Bagherzadeh K, Golestanian S, Jarstfer M, Amanlou M. Potent Human Telomerase Inhibitors: Molecular Dynamic Simulations, Multiple Pharmacophore-Based Virtual Screening, and Biochemical Assays. J Chem Inf Model 2015; 55:2596-610. [PMID: 26529120 DOI: 10.1021/acs.jcim.5b00336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomere maintenance is a universal cancer hallmark, and small molecules that disrupt telomere maintenance generally have anticancer properties. Since the vast majority of cancer cells utilize telomerase activity for telomere maintenance, the enzyme has been considered as an anticancer drug target. Recently, rational design of telomerase inhibitors was made possible by the determination of high resolution structures of the catalytic telomerase subunit from a beetle and subsequent molecular modeling of the human telomerase complex. A hybrid strategy including docking, pharmacophore-based virtual screening, and molecular dynamics simulations (MDS) were used to identify new human telomerase inhibitors. Docking methodology was applied to investigate the ssDNA telomeric sequence and two well-known human telomerase inhibitors' (BIBR1532 and MST-312) modes of interactions with hTERT TEN domain. Subsequently molecular dynamic simulations were performed to monitor and compare hTERT TEN domain, TEN-ssDNA, TEN-BIBR1532, TEN-MST-312, and TEN-ssDNA-BIBR1532 behavior in a dynamic environment. Pharmacophore models were generated considering the inhibitors manner in the TEN domain anchor site. These exploratory studies identified several new potent inhibitors whose IC50 values were generated experimentally in a low micromolar range with the aid of biochemical assays, including both the direct telomerase and the telomeric repeat amplification protocol (TRAP) assays. The results suggest that the current models of human telomerase are useful templates for rational inhibitor design.
Collapse
Affiliation(s)
- Faezeh Shirgahi Talari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran, 14155-6451, Iran.,Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Kowsar Bagherzadeh
- Razi Drug Research Center, Iran University of Medical Sciences , Tehran, 1449614535, Iran
| | - Sahand Golestanian
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran, 14155-6451, Iran
| | - Michael Jarstfer
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran, 14155-6451, Iran
| |
Collapse
|
22
|
siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Biosci Rep 2015; 35:BSR20140145. [PMID: 25671640 PMCID: PMC4370094 DOI: 10.1042/bsr20140145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activatable cell-penetrating peptides (aCPPs) allow non-viral, low cytotoxic and selective delivery of compounds into target cells for cancer therapy. In tumour cells, up-regulation of human telomerase reverse transcriptase (hTERT) frequently occurs and is being considered as a target in cancer diagnosis and treatment. siRNA sequence that target hTERT mRNA can silence the gene and reduce hTERT protein expression to reduce cell proliferation and inhibit cell growth. In our study, we tested a matrix metalloproteinase-2 (MPP2) aCPP in delivering hTERT siRNA into hepatocellular carcinoma cells (SMMC-7721) to silence the hTERT gene. Cultured SMMC-7721 cells were transfected with a complex of aCPPs and hTERT-specific siRNA-encoding or control plasmids. Compared with cells treated with the complex of control plasmid–CPPs, cells treated with the hTERT-specific siRNA-encoding plasmid–CPP complex had a prolonged G1-phase, but a shorter G2/S-phase, indicating a G1-arrest. Treatment with the hTERT-specific siRNA resulted in a significant decrease (by 26%; P<0.05) in hTERT mRNA levels. The aCPPs tested in this study provides a non-viral delivery of siRNA into cancer cells to silence target genes in cancer therapy. In the present study, we delivered human telomerase reverse transcriptase (hTERT) siRNA into SMMC-7721 hepatoma cells using a matrix metalloproteinase-2 (MMP2)-activatable cell-penetrating peptide (aCPP). The siRNA subsequently induced down-regulation of the hTERT gene and G1-arrest, implicating the utility of this delivery system in cancer therapy.
Collapse
|
23
|
Yoshikawa H, Maranon DG, Battaglia CLR, Ehrhart EJ, Charles JB, Bailey SM, LaRue SM. Predicting clinical outcome in feline oral squamous cell carcinoma: tumour initiating cells, telomeres and telomerase. Vet Comp Oncol 2014; 14:371-383. [PMID: 25212092 DOI: 10.1111/vco.12117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/14/2014] [Accepted: 08/05/2014] [Indexed: 01/28/2023]
Abstract
Feline oral squamous cell carcinoma (SCC) has very poor prognosis. Here, a retrospective pilot study was conducted on 20 feline oral SCC patients who underwent stereotactic radiation therapy (SRT), to evaluate: (1) the value of putative tumour initiating cell (TIC) markers of human head and neck SCC (CD44, Bmi-1); (2) telomere length (TL) specifically in putative TICs; and (3) tumour relative telomerase activity (TA). Significant inverse correlations were found between treatment outcomes and Bmi-1 expression, supporting the predictive value of Bmi-1 as a negative prognostic indicator. While TL exhibited a wide range of variability, particularly in very short fractions, many tumours possessed high levels of TA, which correlated with high levels of Bmi-1, Ki67 and EGFR. Taken together, our results imply that Bmi-1 and telomerase may represent novel therapeutic targets in feline oral SCC, as their inhibition - in combination with SRT - would be expected to have beneficial treatment outcome.
Collapse
Affiliation(s)
- H Yoshikawa
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - D G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - C L R Battaglia
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - E J Ehrhart
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - J B Charles
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - S M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - S M LaRue
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
24
|
Abstract
This is a review of RNA as a target for small molecules (ribosomes, riboswitches, regulatory RNAs) and RNA-derived oligonucleotides as tools (antisense/small interfering RNA, ribozymes, aptamers/decoy RNA and microRNA). This review highlights the present state of research using RNA as a drug target or as a potential drug candidate and explains at which stage and to what extent rational design could eventually be involved. Special attention has been paid to the recent potential clinical applications of RNA either as drugs or drug targets. The review deals mainly with mechanistic approaches rather than with physicochemical or computational aspects of RNA-based drug design.
Collapse
Affiliation(s)
- Irene M Lagoja
- Katholieke Universiteit Leuven, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium +32 16 337396 ; +32 16 337340 ;
| | | |
Collapse
|
25
|
Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2012; 39:444-56. [PMID: 22841437 DOI: 10.1016/j.ctrv.2012.06.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/12/2022]
Abstract
Telomeres are protective caps at the ends of human chromosomes. Telomeres shorten with each successive cell division in normal human cells whereas, in tumors, they are continuously elongated by human telomerase reverse transcriptase (hTERT). Telomerase is overexpressed in 80-95% of cancers and is present in very low levels or is almost undetectable in normal cells. Because telomerase plays a pivotal role in cancer cell growth it may serve as an ideal target for anticancer therapeutics. Inhibition of telomerase may lead to a decrease of telomere length resulting in cell senescence and apoptosis in telomerase positive tumors. Several strategies of telomerase inhibition are reviewed, including small molecule inhibitors, antisense oligonucleotides, immunotherapies and gene therapies, targeting the hTERT or the ribonucleoprotein subunit hTER. G-quadruplex stabilizers, tankyrase and HSP90 inhibitors targeting telomere and telomerase assembly, and T-oligo approach are also covered. Based on this review, the most promising current telomerase targeting therapeutics are the antisense oligonucleotide inhibitor GRN163L and immunotherapies that use dendritic cells (GRVAC1), hTERT peptide (GV1001) or cryptic peptides (Vx-001). Most of these agents have entered phase I and II clinical trials in patients with various tumors, and have shown good response rates as evidenced by a reduction in tumor cell growth, increased overall disease survival, disease stabilization in advanced staged tumors and complete/partial responses. Most therapeutics have shown to be more effective when used in combination with standard therapies, resulting in concomitant telomere shortening and tumor mass shrinkage, as well as preventing tumor relapse and resistance to single agent therapy.
Collapse
Affiliation(s)
- Maria Ruden
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107-1822, USA
| | | |
Collapse
|
26
|
Meeran SM, Patel SN, Chan TH, Tollefsbol TO. A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res (Phila) 2011; 4:1243-54. [PMID: 21411498 PMCID: PMC3128170 DOI: 10.1158/1940-6207.capr-11-0009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major component of green tea polyphenols (GTP), has been reported to downregulate telomerase activity in breast cancer cells thereby increasing cellular apoptosis and inhibiting cellular proliferation. However, the major concerns with GTPs are their bioavailability and stability under physiologic conditions. In the present study, we show that treatments with EGCG and a novel prodrug of EGCG (pro-EGCG or pEGCG) dose- and time-dependently inhibited the proliferation of human breast cancer MCF-7 and MDA-MB-231 cells but not normal control MCF10A cells. Furthermore, both EGCG and pro-EGCG inhibited the transcription of hTERT (human telomerase reverse transcriptase), the catalytic subunit of telomerase, through epigenetic mechanisms in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells. The downregulation of hTERT expression was found to be because of hTERT promoter hypomethylation and histone deacetylations, mediated at least partially through inhibition of DNA methyltransferase and histone acetyltransferase activities, respectively. In addition, we also observed that EGCG and pEGCG can remodel chromatin structures of the hTERT promoter by decreasing the level of acetyl-H3, acetyl-H3K9, and acetyl-H4 to the hTERT promoter. EGCG and pEGCG induced chromatin alterations that facilitated the binding of many hTERT repressors such as MAD1 and E2F-1 to the hTERT regulatory region. Depletion of E2F-1 and MAD1 by using siRNA reversed the pEGCG downregulated hTERT expression and associated cellular apoptosis differently in ER-positive and ER-negative breast cancer cells. Collectively, our data provide new insights into breast cancer prevention through epigenetic modulation of telomerase by using pro-EGCG, a more stable form of EGCG, as a novel chemopreventive compound.
Collapse
Affiliation(s)
- Syed M Meeran
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Campbell Hall 175, Birmingham, AL 35294-1170, USA.
| | | | | | | |
Collapse
|
27
|
The transposon-driven evolutionary origin and basis of histone deacetylase functions and limitations in disease prevention. Clin Epigenetics 2011; 2:97-112. [PMID: 22704332 PMCID: PMC3365375 DOI: 10.1007/s13148-011-0020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/03/2011] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylases (HDACs) are homologous to prokaryotic enzymes that removed acetyl groups from non-histone proteins before the evolution of eukaryotic histones. Enzymes inherited from prokaryotes or from a common ancestor were adapted for histone deacetylation, while useful deacetylation of non-histone proteins was selectively retained. Histone deacetylation served to prevent transcriptions with pathological consequences, including the expression of viral DNA and the deletion or dysregulation of vital genes by random transposon insertions. Viruses are believed to have evolved from transposons, with transposons providing the earliest impetus of HDAC evolution. Because of the wide range of genes potentially affected by transposon insertions, the range of diseases that can be prevented by HDACs is vast and inclusive. Repressive chromatin modifications that may prevent transcription also include methylation of selective lysine residues of histones H3 and H4 and the methylation of selective DNA cytosines following specific histone lysine methylation. Methylation and acetylation of individual histone residues are mutually exclusive. While transposons were sources of disease to be prevented by HDAC evolution, they were also the source of numerous and valuable coding and regulatory sequences recruited by “molecular domestication.” Those sequences contribute to evolved complex transcription regulation in which components with contradictory effects, such as HDACs and HATs, may be coordinated and complementary. Within complex transcription regulation, however, HDACs remain ineffective as defense against some critical infectious and non-infectious diseases because evolutionary compromises have rendered their activity transient.
Collapse
|
28
|
Chen JLY, Sperry J, Ip NY, Brimble MA. Natural products targeting telomere maintenance. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00241k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc Natl Acad Sci U S A 2010; 107:22272-7. [PMID: 21135231 DOI: 10.1073/pnas.1016369107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Both deficiency and excess of growth hormone (GH) are associated with increased mortality and morbidity. GH replacement in otherwise healthy subjects leads to complications, whereas individuals with isolated GH deficiency such as Laron dwarfs show increased life span. Here, we determined the effects of treatment with the GH-releasing hormone (GHRH) receptor antagonist MZ-5-156 on aging in SAMP8 mice, a strain that develops with aging cognitive deficits and has a shortened life expectancy. Starting at age 10 mo, mice received daily s.c. injections of 10 μg/mouse of MZ-5-156. Mice treated for 4 mo with MZ-5-156 showed increased telomerase activity, improvement in some measures of oxidative stress in brain, and improved pole balance, but no change in muscle strength. MZ-5-156 improved cognition after 2 mo and 4 mo, but not after 7 mo of treatment (ages 12, 14 mo, and 17 mo, respectively). Mean life expectancy increased by 8 wk with no increase in maximal life span, and tumor incidence decreased from 10 to 1.7%. These results show that treatment with a GHRH antagonist has positive effects on some aspects of aging, including an increase in telomerase activity.
Collapse
|
30
|
Sarita Rajender P, Ramasree D, Bhargavi K, Vasavi M, Uma V. Selective inhibition of proteins regulating CDK/cyclin complexes: strategy against cancer—a review. J Recept Signal Transduct Res 2010; 30:206-13. [DOI: 10.3109/10799893.2010.488649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Abstract
INTRODUCTION Age is now widely accepted as the greatest single risk factor for developing bladder cancer, and bladder cancer is considered as primarily a disease of the elderly. Because of the close link between age and incidence of bladder cancer, it can be expected that this disease will become an enormous challenge with the growth of an aging population in the years ahead. METHODS Using MEDLINE, a search of the literature between January 1966 and July 2007 was performed to describe normative physiologic changes associated with aging, elucidate genetic and epigenetic alterations that associate aging with bladder cancer and its phenotypes; and to characterize how aging influences efficacies, risks, side effects, and potential complications of the treatments needed for the various stages of bladder cancer. RESULTS We discuss influence of aging on host physiology, genetic and epigenetic changes, environmental influences, and host factors in the development and treatment of bladder cancer. Treatments with intravesical bacille Calmette Guerin, radical cystectomy, and perioperative chemotherapy are less well tolerated and have poorer response in elderly patients compared with their younger counterparts. Elderly patients face both clinical and broader institutional barriers to appropriate treatment and may receive less aggressive treatment and sub-therapeutic dosing. However, when appropriately selected, elderly patients tolerate and respond well to cancer treatments. CONCLUSIONS The decision to undergo treatment for cancer is a tradeoff between loss of function and/or independence and extension of life, which is complicated by a host of concomitant issues such as comorbid medical conditions, functional declines and "frailty", family dynamics, and social and psychologic issues. Chronological age should not preclude definitive surgical therapy. It is imperative that healthcare practitioners and researchers from disparate disciplines collectively focus efforts towards gaining a better understanding of what the consequences of bladder cancer and its treatments are for older adults and how to appropriately meet the multifaceted medical and psychosocial needs of this growing population.
Collapse
Affiliation(s)
- Shahrokh F. Shariat
- Division of Urology, Sidney Kimmel Center for Prostate and Urologic Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Matthew Milowsky
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Michael J. Droller
- Department of Urology, The Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
32
|
Liu JY, Zhu Q, Li J, Zhao S, Li L. The retrovirus-mediated antisense human telomerase RNA (hTR) gene limits the growth of hepatocellular carcinoma growth in cell culture and animals. Dig Dis Sci 2008; 53:1122-30. [PMID: 17932748 DOI: 10.1007/s10620-007-9980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 08/15/2007] [Indexed: 12/09/2022]
Abstract
AIM To investigate the inhibitory effect of retrovirus-mediated antisense human telomerase RNA (hTR) gene therapy on hepatocelluar carcinoma. METHODS We first constructed the sense and antisense hTR vectors and then transfected these into HepG2 cells. Telomerase activity, cell growth curves, proliferating cell nuclear antigen expression (PCNA), cell cycle distribution, and cell apoptosis were detected by the means of telemere repeat amplification protocol (TRAP), MTT assay, immunofluorescence, flow cytometric analysis, and transferase-mediated nick end labeling (TUNEL), respectively. In order to further confirm the therapeutic effect of this gene therapy, we developed an experimental line of HepG2 tumor-bearing nude mice by and directly injected these with retrovirus expressing the antisense hTR gene. Tumor growth was determined by tumor volume, and cell apoptosis was analyzed by TUNEL. RESULTS The antisense hTR gene was shown to be successfully integrated into the target cells' genome. HepG2 cells transfected with the antisense hTR gene showed down-regulated telomerase activity, inhibited cell growth, decreased PCNA expression, and increased apoptotic rate. Moreover, flow cytometry revealed a decrease of cells in the S phase with cell cycle arrest at the G2/M phase. In the antisense hTR-treated group, tumor growth was significantly reduced and showed an increase of apoptotic cells. CONCLUSION The results indicate that the specific inhibitor of the hTR template is likely to be a very efficient tool for hepatocellular carcinoma research and may possess potential therapeutic significance in the future clinical practice.
Collapse
Affiliation(s)
- Ji-yong Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jing 5 Wei 7 Road, no. 324, Ji'nan, Shandong Province 250021, China.
| | | | | | | | | |
Collapse
|
33
|
Abstract
This review provides an overview of a selection of the most pertinent molecular pathways that link cancer and aging and focuses on those where recent advances were most important. When organizing the bulk of information on this subject, I became aware of the fact that the most evident partition, namely, mechanisms that influence aging and mechanisms that influence cancer occurrence, is difficult to apply. Most mechanisms explaining the aging process are also those that influence carcinogenesis. Mechanisms that are described in tumor suppressor pathways are also contributors to the aging process. From an intuitive point of view, there are phenomena that have traditionally been contributed to aging others to cancer-inducing factors and they are presented herein.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
34
|
Franceschin M, Pascucci E, Alvino A, D'Ambrosio D, Bianco A, Ortaggi G, Savino M. New highly hydrosoluble and not self-aggregated perylene derivatives with three and four polar side-chains as G-quadruplex telomere targeting agents and telomerase inhibitors. Bioorg Med Chem Lett 2007; 17:2515-22. [PMID: 17317176 DOI: 10.1016/j.bmcl.2007.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Four new perylene derivatives with three and four basic side-chains are reported here as G-quadruplex interactive compounds. The new perylene derivatives are readily soluble in water and not self-aggregated, in contrast to what happens with the previously reported two side-chain perylene derivatives. All four compounds are able to induce the G-quadruplex and to inhibit 50% of telomerase activity at about 5 microM concentration, showing a similar efficiency with respect to each other. Molecular modelling studies are presented to try to explain these findings.
Collapse
Affiliation(s)
- Marco Franceschin
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|