1
|
Taguchi K, Sakai Y, Furuhashi T, Hara S, Wada A. Development of Uniform Ribosome Display Technology Enabling Easy and Efficient Identification of Full-Length Proteins that Interact with Bioactive Small and Large Molecules. Chembiochem 2025; 26:e202400352. [PMID: 39073256 DOI: 10.1002/cbic.202400352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Identifying target proteins that interact with bioactive molecules is indispensable for understanding their mechanisms of action. In this study, we developed a uniform ribosome display technology using equal-length DNAs and mRNAs to improve molecular display principle for target identification. The equal-length DNAs were designed to contain various coding sequences for full-length proteins with molecular weights of up to 130 kDa and were used to synthesize equal-length mRNAs, which allowed the formation of full-length protein-ribosome-equal-length mRNA complexes. Uniform ribosome display selections of dihydrofolate reductase and haloalkane dehalogenase mutant were performed against methotrexate and chlorohexane, respectively. Quantitative changes of proteins after each selection indicated that the target protein-displaying ribosomal complexes were specifically selected through non-covalent or covalent interactions with the corresponding bioactive molecules. Furthermore, selection of full-length proteins interacting with methotrexate or anti-DDX46 antibody from protein pools showed that only the target proteins could be precisely identified even though the molar amounts of equal-length mRNAs encoding them were adjusted to 1/20,000 of the total equal-length mRNAs. Thus, the uniform ribosome display technology enabled efficient identification of target proteins that interact with bioactive small and large molecules through simplified operations without deep sequencing.
Collapse
Affiliation(s)
- Kenshiro Taguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuichi Sakai
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuto Furuhashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shuta Hara
- Department of Material and Life Chemistry, Kanagawa University, 3-6-1, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Akira Wada
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
2
|
Drozdowska D, Wróbel-Tałałaj A, Parzych C, Ratkiewicz A. Benzamide Trimethoprim Derivatives as Human Dihydrofolate Reductase Inhibitors-Molecular Modeling and In Vitro Activity Study. Biomedicines 2024; 12:1079. [PMID: 38791041 PMCID: PMC11117929 DOI: 10.3390/biomedicines12051079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Human dihydrofolate reductase (hDHFR) is an essential cellular enzyme, and inhibiting its activity is a promising strategy for cancer therapy. We have chosen the trimethoprim molecule (TMP) as a model compound in our search for a new class of hDHFR inhibitors. We incorporated an amide bond, a structural element typical of netropsin, a ligand that binds selectively in the minor groove of DNA, into the molecules of TMP analogs. In this work, we present previously obtained and evaluated eleven benzamides (JW1-JW8; MB1, MB3, MB4). Recently, these compounds were specifically projected as potential inhibitors of the enzymes acetylcholinesterase (AChE) and β-secretase (BACE1). JW8 was most active against AChE, with an inhibitory concentration of AChE IC50 = 0.056 µM, while the IC50 for donepezil was 0.046 µM. This compound was also the most active against the BACE1 enzyme. The IC50 value was 9.01 µM compared to that for quercetin, with IC50 = 4.89 µM. All the benzamides were active against hDHFR, with IC50 values ranging from 4.72 to 20.17 µM, and showed activity greater than TMP (55.26 µM). Quantitative results identified the derivatives JW2 and JW8 as the most promising. A molecular modeling study demonstrates that JW2 interacts strongly with the key residue Gly-117, while JW8 interacts strongly with Asn-64 and Arg-70. Furthermore, JW2 and JW8 demonstrate the ability to stabilize the hDHFR enzyme, despite forming fewer hydrogen bonds with the protein compared to reference ligands. It can be concluded that this class of compounds certainly holds great promise for good active leads in medicinal chemistry.
Collapse
Affiliation(s)
- Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland;
| | - Agnieszka Wróbel-Tałałaj
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland;
| | - Cezary Parzych
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245 Białystok, Poland; (C.P.); (A.R.)
| | - Artur Ratkiewicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245 Białystok, Poland; (C.P.); (A.R.)
| |
Collapse
|
3
|
Feng R, Sun B, Zhang S, Su E, Kovalevsky A, Zhang F, Bennett BC, Shen Q, Wan Q. Discovery of Novel Rhizoctonia solani DHFR Inhibitors as Fungicides Using Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19385-19395. [PMID: 38038282 DOI: 10.1021/acs.jafc.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Dihydrofolate reductase (DHFR) is an essential enzyme in the folate pathway and has been recognized as a well-known target for antibacterial and antifungal drugs. We discovered eight compounds from the ZINC database using virtual screening to inhibit Rhizoctonia solani (R. solani), a fungal pathogen in crops. These compounds were evaluated with in vitro assays for enzymatic and antifungal activity. Among these, compound Hit8 is the most active R. solani DHFR inhibitor, with the IC50 of 10.2 μM. The selectivity of inhibition is 22.3 against human DHFR with the IC50 of 227.7 μM. Moreover, Hit8 has higher antifungal activity against R. solani (EC50 of 38.2 mg L-1) compared with validamycin A (EC50 of 67.6 mg L-1), a well-documented fungicide. These results suggest that Hit8 may be a potential fungicide. Our study exemplifies a computer-aided method to discover novel inhibitors that could target plant pathogenic fungi.
Collapse
Affiliation(s)
- Ruirui Feng
- College of Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bo Sun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shengkai Zhang
- Institute of Advanced Science Facilities, Shenzhen 518107, People's Republic of China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Feng Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Brad C Bennett
- Biological and Environmental Science Department, Samford University, Birmingham, Alabama 35229, United States
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qun Wan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
4
|
Zhu Z, Chen C, Zhang J, Lai F, Feng J, Wu G, Xia J, Zhang W, Han Z, Zhang C, Yang Q, Wang Y, Liu B, Li T, Wu S. Exploration and Biological Evaluation of 1,3-Diamino-7 H-pyrrol[3,2- f]quinazoline Derivatives as Dihydrofolate Reductase Inhibitors. J Med Chem 2023; 66:13946-13967. [PMID: 37698518 DOI: 10.1021/acs.jmedchem.3c00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Dihydrofolate reductase (DHFR), a core enzyme of folate metabolism, plays a crucial role in the biosynthesis of purines and thymidylate for cell proliferation and growth in both prokaryotic and eukaryotic cells. However, the development of new DHFR inhibitors is challenging due to the limited number of scaffolds available for drug development. Hence, we designed and synthesized a new class of DHFR inhibitors with a 1,3-diamino-7H-pyrrol[3,2-f]quinazoline derivative (PQD) structure bearing condensed rings. Compound 6r exhibited therapeutic effects on mouse models of systemic infection and thigh infection caused by methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. Moreover, methyl-modified PQD compound 8a showed a strong efficacy in a murine model of breast cancer, which was better than the effects of taxol. The findings showcased in this study highlight the promising capabilities of novel DHFR inhibitors in addressing bacterial infections as well as breast cancer.
Collapse
Affiliation(s)
- Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cantong Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guangxu Wu
- Department of Pharmacy, The People Hospital of Liupanshui City, Guizhou, Liupanshui 553000, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Karasev DA, Sobolev BN, Lagunin AA, Filimonov DA, Poroikov VV. The method predicting interaction between protein targets and small-molecular ligands with the wide applicability domain. Comput Biol Chem 2022; 98:107674. [DOI: 10.1016/j.compbiolchem.2022.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
|
7
|
Abdolmaleki B, Maddah M. Screening of indole derivatives as the potent anticancer agents on dihydrofolate reductase: pharmaco-informatics and molecular dynamics simulation. J Biomol Struct Dyn 2022; 41:3667-3679. [PMID: 35318890 DOI: 10.1080/07391102.2022.2053745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dihydrofolate reductase (DHFR) is a ubiquitous cellular enzyme involved in the biosynthesis of nucleotide and protein precursors, thus, the inhibition of human DHFR can be a promising strategy in cancer treatment. The design of effective anticancer drugs is an urgent need today according to the high spread of cancer. The indole molecule with diverse mechanisms of action and anticancer properties is one of the efficient pharmacophores in drug design. Hence, a virtual library of indole derivatives as a scaffold was selected for designing safer and more effective anticancer drugs against DHFR in this work. All indole derivatives utilized in the library design were selected regarding appreciable tumor growth inhibition. Structure-activity relationship (SAR), docking energy, ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, and effective non-covalent interactions were used to identify potential anticancer with indole scaffold. Results showed a higher number of indole moieties provide a strong attachment to the DHFR binding pocket and therefore more effective anticancer activity. The indole scaffold in combination with dichlorobenzene improves DHFR inhibition whereas barbituric acid weakens inhibition activity. In the following to validate the docking results, Molecular dynamics (MD) simulation and molecular mechanics generalized-Born surface area (MM-GBSA) indicated the permanent stability of the selected ligands into the DHFR binding pocket and the key amino acids. Therefore, promising pharmacophores based on indole-DHFR interactions were discovered, and the outcome could be useful in guiding future in vitro and in vivo drug discovery in cancer medicine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behnaz Abdolmaleki
- Department of Chemistry, K.N.Toosi University of Technology, Tehran, Iran
| | - Mina Maddah
- Department of Chemistry, K.N.Toosi University of Technology, Tehran, Iran.,Super Computing Institute, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
QSAR and Molecular Docking Studies of Pyrimidine–Coumarin–Triazole Conjugates as Prospective Anti-Breast Cancer Agents. Molecules 2022; 27:molecules27061845. [PMID: 35335208 PMCID: PMC8955476 DOI: 10.3390/molecules27061845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a life-threatening disease and is the second leading cause of death worldwide. Although many drugs are available for the treatment of cancer, survival outcomes are very low. Hence, rapid development of newer anticancer agents is a prime focus of the medicinal chemistry community. Since the recent past, computational methods have been extensively employed for accelerating the drug discovery process. In view of this, in the present study we performed 2D-QSAR (Quantitative Structure-Activity Relationship) analysis of a series of compounds reported with potential anticancer activity against breast cancer cell line MCF7 using QSARINS software. The best four models exhibited a r2 value of 0.99. From the generated QSAR equations, a series of pyrimidine-coumarin-triazole conjugates were designed and their MCF7 cell inhibitory activities were predicted using the QSAR equations. Furthermore, molecular docking studies were carried out for the designed compounds using AutoDock Vina against dihydrofolate reductase (DHFR), colchicine and vinblastine binding sites of tubulin, the key enzyme targets in breast cancer. The most active compounds identified through these computational studies will be useful for synthesizing and testing them as prospective novel anti-breast cancer agents.
Collapse
|
9
|
Synthesis, X-ray Single-Crystal Analysis, and Anticancer Activity Evaluation of New Alkylsulfanyl-Pyridazino[4,5-b]indole Compounds as Multitarget Inhibitors of EGFR and Its Downstream PI3K-AKT Pathway. CRYSTALS 2022. [DOI: 10.3390/cryst12030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The alkylation of 3,5-dihydro-4H-pyridazino[4,5-b]indole-4-thione with benzyl bromide, ethyl chloroacetate, and allyl bromide in the presence of potassium carbonate (K2CO3) yielded new alkylsulfanylpyridazino[4,5-b]indole derivatives (i.e., compounds 4–6). Hydrazinolysis of ester 6 resulted in hydrazide 7. The structure of compound 6 was verified by X-ray single-crystal analysis. Among the synthesized compounds, compound 6 exhibited the most promising cytotoxicity toward MCF-7 cells with an IC50 value of 12 µM. It showed potential inhibition activity toward EGFR, PI3K, and AKT in MCF-7 cells, with 0.26-, 0.49-, and 0.31-fold reductions in concentration compared to an untreated control. Additionally, it showed apoptosis-inducing activity in MCF-7 cells (47.98-fold); overall apoptosis increased to 38.87% compared to 0.81% in the untreated control, which disrupted the cell cycle at pre-G1 and S phases. Moreover, compound 6 exhibited good binding affinities toward the tested proteins (EGFR, PI3K, and AKT) and had binding energies ranging from −15.87 to −24.87 Kcal/mol. It also formed good interactions with essential amino acids inside the binding sites. Hence, compound 6 is recommended as an anti-breast cancer chemotherapeutic due to its effects on the EGFR-PI3K-AKT pathway.
Collapse
|
10
|
Maliszewski D, Drozdowska D. Recent Advances in the Biological Activity of s-Triazine Core Compounds. Pharmaceuticals (Basel) 2022; 15:221. [PMID: 35215333 PMCID: PMC8875733 DOI: 10.3390/ph15020221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
An effective strategy for successful chemotherapy relies on creating compounds with high selectivity against cancer cells compared to normal cells and relatively low cytotoxicity. One such approach is the discovery of critical points in cancer cells, i.e., where specific enzymes that are potential therapeutic targets are generated. Triazine is a six-membered heterocyclic ring compound with three nitrogen replacing carbon-hydrogen units in the benzene ring structure. The subject of this review is the symmetrical 1,3,5-triazine, known as s-triazine. 1,3,5-triazine is one of the oldest heterocyclic compounds available. Because of its low cost and high availability, it has attracted researcher attention for novel synthesis. s-Triazine has a weak base, it has much weaker resonance energy than benzene, therefore, nucleophilic substitution is preferred to electrophilic substitution. Heterocyclic bearing a symmetrical s-triazine core represents an interesting class of compounds possessing a wide spectrum of biological properties such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal and antimicrobial, antimalarial agents. They also have applications as dyes, lubricants, and analytical reagents. Hence, the group of 1,3,5-triazine derivatives has developed over the years. Triazine is not only the core amongst them, but is also a factor increasing the kinetic potential of the entire derivatives. Modifying the structure and introducing new substituents makes it possible to obtain compounds with broad inhibitory activity on processes such as proliferation. In some cases, s-triazine derivatives induce cell apoptosis. In this review we will present currently investigated 1,3,5-triazine derivatives with anti-cancer activities, with particular emphasis on their inhibition of enzymes involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| |
Collapse
|
11
|
Chawla P, Teli G, Gill RK, Narang RK. An Insight into Synthetic Strategies and Recent Developments of Dihydrofolate Reductase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pooja Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
- Pooja Chawla Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001 Punjab India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Rupinder Kaur Gill
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Raj Kumar Narang
- Department of Pharmaceutics ISF College of Pharmacy Moga Punjab India
| |
Collapse
|
12
|
Wróbel A, Baradyn M, Ratkiewicz A, Drozdowska D. Synthesis, Biological Activity, and Molecular Dynamics Study of Novel Series of a Trimethoprim Analogs as Multi-Targeted Compounds: Dihydrofolate Reductase (DHFR) Inhibitors and DNA-Binding Agents. Int J Mol Sci 2021; 22:3685. [PMID: 33916202 PMCID: PMC8037161 DOI: 10.3390/ijms22073685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Eighteen previously undescribed trimethoprim (TMP) analogs containing amide bonds (1-18) were synthesized and compared with TMP, methotrexate (MTX), and netropsin (NT). These compounds were designed as potential minor groove binding agents (MGBAs) and inhibitors of human dihydrofolate reductase (hDHFR). The all-new derivatives were obtained via solid phase synthesis using 4-nitrophenyl Wang resin. Data from the ethidium displacement test confirmed their DNA-binding capacity. Compounds 13-14 (49.89% and 43.85%) and 17-18 (41.68% and 42.99%) showed a higher binding affinity to pBR322 plasmid than NT. The possibility of binding in a minor groove as well as determination of association constants were performed using calf thymus DNA, T4 coliphage DNA, poly (dA-dT)2, and poly (dG-dC)2. With the exception of compounds 9 (IC50 = 56.05 µM) and 11 (IC50 = 55.32 µM), all of the compounds showed better inhibitory properties against hDHFR than standard, which confirms that the addition of the amide bond into the TMP structures increases affinity towards hDHFR. Derivatives 2, 6, 13, 14, and 16 were found to be the most potent hDHFR inhibitors. This molecular modelling study shows that they interact strongly with a catalytically important residue Glu-30.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Maciej Baradyn
- Department of Physical Chemistry, Institute of Chemistry, University of Bialystok, 15-245 Bialystok, Poland; (M.B.); (A.R.)
| | - Artur Ratkiewicz
- Department of Physical Chemistry, Institute of Chemistry, University of Bialystok, 15-245 Bialystok, Poland; (M.B.); (A.R.)
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland;
| |
Collapse
|
13
|
Heterocyclic Substitutions Greatly Improve Affinity and Stability of Folic Acid towards FRα. an In Silico Insight. Molecules 2021; 26:molecules26041079. [PMID: 33670773 PMCID: PMC7922218 DOI: 10.3390/molecules26041079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA–FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.
Collapse
|
14
|
Wróbel A, Maliszewski D, Baradyn M, Drozdowska D. Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs. Molecules 2019; 25:molecules25010116. [PMID: 31892256 PMCID: PMC6983048 DOI: 10.3390/molecules25010116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
A new series of trimethoprim (TMP) analogs containing amide bonds (1–6) have been synthesized. Molecular docking, as well as dihydrofolate reductase (DHFR) inhibition assay were used to confirm their affinity to bind dihydrofolate reductase enzyme. Data from the ethidium displacement test showed their DNA-binding capacity. Tests confirming the possibility of DNA binding in a minor groove as well as determination of the association constants were performed using calf thymus DNA, T4 coliphage DNA, poly (dA-dT)2 and poly (dG-dC)2. Additionally, the mechanism of action of the new compounds was studied. In conclusion, some of our new analogs inhibited DHFR activity more strongly than TMP did, which confirms, that the addition of amide bonds into the analogs of TMP increases their affinity towards DHFR.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, 15222 Bialystok, Poland; (D.M.); (D.D.)
- Correspondence: ; Tel.: +50-253-3188
| | - Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15222 Bialystok, Poland; (D.M.); (D.D.)
| | - Maciej Baradyn
- Department of Physical Chemistry, University of Bialystok, Institute of Chemistry, 15245 Bialystok, Poland;
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15222 Bialystok, Poland; (D.M.); (D.D.)
| |
Collapse
|