1
|
Chen Z, Zhang X, Lin Y, Chen Z. ELSA-PSYCHE: An Improved Method for Protecting Pure Shift Spectra from Artifacts. J Phys Chem Lett 2024; 15:9820-9824. [PMID: 39297489 DOI: 10.1021/acs.jpclett.4c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Numerous 1H-1H J couplings contribute to complex multiplets in 1H nuclear magnetic resonance spectroscopy, leading to an ambiguous spectral assignment, particularly for strongly coupled protons. Although the PSYCHE approach has proven to be effective in simplifying complex spectra by collapsing J couplings, the PSYCHE pure shift spectrum of strongly coupled protons always suffers from sideband artifacts and baseline oscillations, which impede spectral identification. Herein, we introduce a novel universal technique designed to separate artifacts from the desired absorption-mode pure shift signals. This new study will significantly benefit the development of molecular structure elucidations and composition analysis in the fields of chemistry, biochemistry, and metabonomics.
Collapse
Affiliation(s)
- Ziqiao Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xintong Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yulan Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Čakić Semenčić M, Kovačević M, Barišić L. Recent Advances in the Field of Amino Acid-Conjugated Aminoferrocenes-A Personal Perspective. Int J Mol Sci 2024; 25:4810. [PMID: 38732028 PMCID: PMC11084972 DOI: 10.3390/ijms25094810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.
Collapse
Affiliation(s)
| | | | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.Č.S.); (M.K.)
| |
Collapse
|
3
|
Macias ALD, Alecrim LC, Almeida FCL, Giordano RJ. Understanding the Structural Requirements of Peptide-Protein Interaction and Applications for Peptidomimetic Development. Methods Mol Biol 2024; 2793:65-82. [PMID: 38526724 DOI: 10.1007/978-1-0716-3798-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Protein-protein interaction is at the heart of most biological processes, and small peptides that bind to protein binding sites are resourceful tools to explore and understand the structural requirements for these interactions. In that sense, phage display is a well-suited technology to study protein-protein interactions, as it allows for unbiased screening of billions of peptides in search for those that interact with a protein binding domain. Here, we will illustrate how two distinct but complementary approaches, phage display and nuclear magnetic resonance (NMR), can be utilized to unveil structural details of peptide-protein interaction. Finally, knowledge derived from phage mutagenesis and NMR studies can be streamlined for quick peptidomimetic design and synthesis using the retroinversion approach to validate using in vitro and in vivo assays the therapeutic potential of peptides identified by phage display.
Collapse
Affiliation(s)
| | - Lilian Costa Alecrim
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Jose Giordano
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Grant TM, Rennison D, Arabshahi HJ, Brimble MA, Cahill P, Svenson J. Effect of regio- and stereoisomerism on antifouling 2,5-diketopiperazines. Org Biomol Chem 2022; 20:9431-9446. [PMID: 36408605 DOI: 10.1039/d2ob01864k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Marine biofouling is a problem that plagues all maritime industries at vast economic and environmental cost. Previous and current methods to prevent biofouling have employed the use of heavy metals and other toxic or highly persistent chemicals, and these methods are now coming under immense regulatory pressure. Recent studies have illustrated the potential of nature-inspired tetrasubstituted 2,5-diketopiperazines (2,5-DKPs) as eco-friendly marine biocides for biofouling control. These highly active symmetrically substituted 2,5-DKPs can be generated by combining structural motifs from cationic innate defence peptides and natural marine antifoulants. A balance between a threshold hydrophobic contribution and sufficient cationic charge has been established as key for bioactivity, and our current study further increases understanding of the antifouling mechanism by investigating the effect of both regio- and stereochemistry. Novel synthetic routes for the generation of unsymmetrical 2,5-DKPs were developed and a library of nine compounds was prepared. The compounds were screened against a series of four model macrofouling organisms (Ciona savignyi, Mytilus galloprovincialis, Spirobranchus cariniferus, and Undaria pinnatifida). Several of the evaluated compounds displayed inhibitory activity at sub-micromolar concentrations. The structural contributions to antifouling bioactivity were studied using NMR spectroscopy and molecular modelling, revealing a strong dependence on a stable amphiphilic solution structure regardless of substitution pattern.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Homayon J Arabshahi
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
5
|
Kovačević M, Čakić Semenčić M, Radošević K, Molčanov K, Roca S, Šimunović L, Kodrin I, Barišić L. Conformational Preferences and Antiproliferative Activity of Peptidomimetics Containing Methyl 1'-Aminoferrocene-1-carboxylate and Turn-Forming Homo- and Heterochiral Pro-Ala Motifs. Int J Mol Sci 2021; 22:ijms222413532. [PMID: 34948332 PMCID: PMC8705031 DOI: 10.3390/ijms222413532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of peptidomimetics is based on structural modifications of natural peptides that aim not only to mimic their 3D shape and biological function, but also to reduce their limitations. The peptidomimetic approach is used in medicinal chemistry to develop drug-like compounds that are more active and selective than natural peptides and have fewer side effects. One of the synthetic strategies for obtaining peptidomimetics involves mimicking peptide α-helices, β-sheets or turns. Turns are usually located on the protein surface where they interact with various receptors and are therefore involved in numerous biological events. Among the various synthetic tools for turn mimetic design reported so far, our group uses an approach based on the insertion of different ferrocene templates into the peptide backbone that both induce turn formation and reduce conformational flexibility. Here, we conjugated methyl 1'-aminoferrocene-carboxylate with homo- and heterochiral Pro-Ala dipeptides to investigate the turn formation potential and antiproliferative properties of the resulting peptidomimetics 2-5. Detailed spectroscopic (IR, NMR, CD), X-ray and DFT studies showed that the heterochiral conjugates 2 and 3 were more suitable for the formation of β-turns. Cell viability study, clonogenic assay and cell death analysis showed the highest biological potential of homochiral peptide 4.
Collapse
Affiliation(s)
- Monika Kovačević
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
| | - Mojca Čakić Semenčić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
| | - Kristina Radošević
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Krešimir Molčanov
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Lucija Šimunović
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
| | - Ivan Kodrin
- Department of Organic Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (I.K.); (L.B.); Tel.: +385-1-4606-403 (I.K.); +385-1-4605-069 (L.B.)
| | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
- Correspondence: (I.K.); (L.B.); Tel.: +385-1-4606-403 (I.K.); +385-1-4605-069 (L.B.)
| |
Collapse
|