1
|
Zeng Y, Wang X, Hu J, Tian C, Liu R, Chen X, Huang L, Liang X, Wang X, Fan H, Zhang H, Lu Y. LZTS3 represses tumorigenesis and radioresistance via CK1δ and β-TrCP-mediated ubiquitination pathway in lung cancer. Cell Signal 2025; 129:111655. [PMID: 39956246 DOI: 10.1016/j.cellsig.2025.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Radioresistance is one of the main causes for local treatment failure in lung cancer. Nevertheless, the potential mechanisms of radioresistance in lung cancer have not been elucidated completely. Here, we discover a carcinoma-inhibiting protein called leucine zipper tumor suppressor 3 (LZTS3), which is low-expressed and related to adverse outcome in lung cancer. Moreover, our studies demonstrate that LZTS3 restrains cell proliferation and radioresistance in vitro and in vivo. Mechanistically, protein kinase CK1δ interacts with LZTS3, resulting in E3 ubiquitin ligase β-TrCP recognizes and binds to LZTS3. Thus, LZTS3 is degraded by the ubiquitin-proteasome pathway. We also identify two conserved degrons (DSGRNS and DSGRAS) are essential for the ubiquitinated degradation of LZTS3 by CK1δ and β-TrCP. More importantly, we detect that the CK1δ and β-TrCP-mediated degradation of LZTS3 facilitate the cell growth, proliferation and radioresistance in lung cancer. Collectivelly, our results suggest that LZTS3 regulates tumorigenesis and radioresistance in lung cancer depend on a CK1δ and β-TrCP-mediated ubiquitin-proteasome pathway. LZTS3 may be a new molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology,Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of medical oncology, Sir run run shaw hospital, School of medicine, Zhejiang university, China
| | - Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoyan Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of medical oncology, Sir run run shaw hospital, School of medicine, Zhejiang university, China
| | - Hongjie Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hu Bei 430022, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Lee H, Elkamhawy A, Rakhalskaya P, Lu Q, Nada H, Quan G, Lee K. Small Molecules in Parkinson's Disease Therapy: From Dopamine Pathways to New Emerging Targets. Pharmaceuticals (Basel) 2024; 17:1688. [PMID: 39770531 PMCID: PMC11677913 DOI: 10.3390/ph17121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder affecting approximately 10 million people worldwide, with prevalence expected to rise as the global population ages. It is characterized by the degeneration of dopamine-producing neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremor, rigidity, bradykinesia, postural instability, and gait disturbances, as well as non-motor symptoms including olfactory disturbances, sleep disorders, and depression. Currently, no cure exists for PD, and most available therapies focus on symptom alleviation. This dopamine deficiency impairs motor control, and since dopamine itself cannot cross the blood-brain barrier (BBB), the precursor L-Dopa is commonly used in treatment. L-Dopa is administered with enzyme inhibitors to prevent premature conversion outside the brain, allowing it to cross the BBB and convert to dopamine within the central nervous system. Although these therapies have improved symptom management, recent research has revealed additional molecular factors in PD pathology, such as α-synuclein aggregation, mitochondrial dysfunction, and lysosomal abnormalities, contributing to its complexity. These discoveries open up possibilities for neuroprotective therapies that could slow disease progression. In this review, we categorize PD therapeutic targets into two main groups: currently used therapies and targets under active research. We also introduce promising small-molecule compounds studied between 2019 and 2023, which may represent future treatment options. By examining both established and emerging targets, we aim to highlight effective strategies and potential directions for future drug development in Parkinson's disease therapy.
Collapse
Affiliation(s)
- Hwayoung Lee
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (H.L.); (Q.L.); (H.N.); (G.Q.)
| | - Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Polina Rakhalskaya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Qili Lu
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (H.L.); (Q.L.); (H.N.); (G.Q.)
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (H.L.); (Q.L.); (H.N.); (G.Q.)
| | - Guofeng Quan
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (H.L.); (Q.L.); (H.N.); (G.Q.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (H.L.); (Q.L.); (H.N.); (G.Q.)
| |
Collapse
|
3
|
Wen Y, Wang H, Yang X, Zhu Y, Li M, Ma X, Huang L, Wan R, Zhang C, Li S, Jia H, Guo Q, Lu X, Li Z, Shen X, Zhang Q, Si L, Yin C, Liu T. Pharmacological targeting of casein kinase 1δ suppresses oncogenic NRAS-driven melanoma. Nat Commun 2024; 15:10088. [PMID: 39572526 PMCID: PMC11582648 DOI: 10.1038/s41467-024-54140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Activating mutations in NRAS account for 15-20% of melanoma, yet effective anti-NRAS therapies are still lacking. In this study, we unveil the casein kinase 1δ (CK1δ) as an uncharacterized regulator of oncogenic NRAS mutations, specifically Q61R and Q61K, which are the most prevalent NRAS mutations in melanoma. The genetic ablation or pharmacological inhibition of CK1δ markedly destabilizes NRAS mutants and suppresses their oncogenic functions. Moreover, we identify USP46 as a bona fide deubiquitinase of NRAS mutants. Mechanistically, CK1δ directly phosphorylates USP46 and activates its deubiquitinase activity towards NRAS mutants, thus promoting oncogenic NRAS-driven melanocyte malignant transformation and melanoma progression in vitro and in vivo. Our findings underscore the significance of the CK1δ-USP46 axis in stabilizing oncogenic NRAS mutants and provide preclinical evidence that targeting this axis holds promise as a therapeutic strategy for human melanoma harboring NRAS mutations.
Collapse
Grants
- This study was supported by National Natural Science Foundation of China (82473109 TL), Guangdong Basic and Applied Basic Research Foundation (2024A1515013266 TL, 2024B1515040007 TL), Guangdong Major Project of Basic and Applied Basic Research (2023B0303000026 TL), Major Talent Program of Guangdong Provincial (2019QN01Y933 TL), the project of State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medicinal University (QJJ[2022]420 TL), Fundamental Research Funds for the Central Universities (21622102 TL), Medical Joint Fund of Jinan University (YXJC2022006 TL).
- This study was supported by National Natural Science Foundation of China (82404654 YW), China Postdoctoral Science Foundation (2024M750581 YW), Guangdong Provincial Second People's Hospital Ph.D./Postdoctoral Workstation Program (2023BSGZ009 YW).
- This study was supported by National Natural Science Foundation of China (81603133 YZ), Guangdong Basic and Applied Basic Research Foundation (2022A1515012371 YZ),Guangzhou Basic Research Program Basic and Applied Basic Research Project (2023A04J0645 YZ).
- The "San Jia Si Qing" fund of the Affiliated Guangdong Second Provincial General Hospital of Jinan University (2024C002 QZ).
- This study was supported by National Natural Science Foundation of China (82425047 LS), Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20220901 LS), the National Key Research and Development Program (2023YFC2506404 LS), Beijing Natural Science Foundation (7242021 LS).
- This study was supported by National Natural Science Foundation of China (32100579 CY, 82341011 CY), Guangdong Basic and Applied Basic Research Foundation (2020A1515110857 CY),National Key R&D Program of China (2022YFA0912600 CY),Shenzhen Medical Research Fund (B2302018 CY), Major Program (S201101004 CY) and Open Fund (SZBL2021080601004 CY) of Shenzhen Bay Laboratory.
Collapse
Affiliation(s)
- Yalei Wen
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xiuqing Ma
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Lei Huang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Rui Wan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Shengrong Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qin Guo
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Xiaoyun Lu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengqiu Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Qiushi Zhang
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China.
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China.
| | - Tongzheng Liu
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Zhang J, Ma X, Li Z, Liu H, Tian M, Wen Y, Wang S, Wang L. Identification of key genes and diagnostic model associated with circadian rhythms and Parkinson's disease by bioinformatics analysis. Front Aging Neurosci 2024; 16:1458476. [PMID: 39478700 PMCID: PMC11523131 DOI: 10.3389/fnagi.2024.1458476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Background Circadian rhythm disruption is typical in Parkinson's disease (PD) early stage, and it plays an important role in the prognosis of the treatment effect in the advanced stage of PD. There is growing evidence that circadian rhythm genes can influence development of PD. Therefore, this study explored specific regulatory mechanism of circadian genes (C-genes) in PD through bioinformatic approaches. Methods Differentially expressed genes (DEGs) between PD and control samples were identified from GSE22491 using differential expression analysis. The key model showing the highest correlation with PD was derived through WGCNA analysis. Then, DEGs, 1,288 C-genes and genes in key module were overlapped for yielding differentially expressed C-genes (DECGs), and they were analyzed for LASSO and SVM-RFE for yielding critical genes. Meanwhile, from GSE22491 and GSE100054, receiver operating characteristic (ROC) was implemented on critical genes to identify biomarkers, and Gene Set Enrichment Analysis (GSEA) was applied for the purpose of exploring pathways involved in biomarkers. Eventually, immune infiltrative analysis was applied for understanding effect of biomarkers on immune microenvironment, and therapeutic drugs which could affect biomarkers expressions were also predicted. Finally, we verified the expression of the genes by q-PCR. Results Totally 634 DEGs were yielded between PD and control samples, and MEgreen module had the highest correlation with PD, thus it was defined as key model. Four critical genes (AK3, RTN3, CYP4F2, and LEPR) were identified after performing LASSO and SVM-RFE on 18 DECGs. Through ROC analysis, AK3, RTN3, and LEPR were identified as biomarkers due to their excellent ability to distinguish PD from control samples. Besides, biomarkers were associated with Parkinson's disease and other functional pathways. Conclusion Through bioinformatic analysis, the circadian rhythm related biomarkers were identified (AK3, RTN3 and LEPR) in PD, contributing to studies related to PD treatment.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaopeng Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | | | - Hu Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Mei Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Liang Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
5
|
Grieco I, Bassani D, Trevisan L, Salmaso V, Cescon E, Prencipe F, Da Ros T, Martinez-Gonzalez L, Martinez A, Spalluto G, Moro S, Federico S. 7-Amino-[1,2,4]triazolo[1,5-a][1,3,5]triazines as CK1δ inhibitors: Exploring substitutions at the 2 and 5-positions. Bioorg Chem 2024; 151:107659. [PMID: 39059072 DOI: 10.1016/j.bioorg.2024.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
CK1δ is a serine-threonine kinase involved in several pathological conditions including neuroinflammation and neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Specifically, it seems that an inhibition of CK1δ could have a neuroprotective effect in these conditions. Here, a series of [1,2,4]triazolo[1,5-a][1,3,5]triazines were developed as ATP-competitive CK1δ inhibitors. Both positions 2 and 5 have been explored leading to a total of ten compounds exhibiting IC50s comprised between 29.1 µM and 2.08 µM. Three of the four most potent compounds (IC50 < 3 µM) bear a thiophene ring at the 2 position. All compounds have been submitted to computational studies that identified the chain composed of at least 2 atoms (e.g., nitrogen and carbon atoms) at the 5 position as crucial to determine a key bidentate hydrogen bond with Leu85 of CK1δ. Most potent compounds have been tested in vitro, resulting passively permeable to the blood-brain barrier and, safe and slight neuroprotective on a neuronal cell model. These results encourage to further structural optimize the series to obtain more potent CK1δ inhibitors as possible neuroprotective agents to be tested on models of the above-mentioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilenia Grieco
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Davide Bassani
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Letizia Trevisan
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Eleonora Cescon
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Tatiana Da Ros
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Loreto Martinez-Gonzalez
- Centro de Investigaciones Biologicas, CSIC, Avenida Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de investigación biomédica en red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain.
| | - Ana Martinez
- Centro de Investigaciones Biologicas, CSIC, Avenida Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de investigación biomédica en red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain.
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
6
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
7
|
Calenda S, Catarzi D, Varano F, Vigiani E, Volpini R, Lambertucci C, Spinaci A, Trevisan L, Grieco I, Federico S, Spalluto G, Novello G, Salmaso V, Moro S, Colotta V. Structural Investigations on 2-Amidobenzimidazole Derivatives as New Inhibitors of Protein Kinase CK1 Delta. Pharmaceuticals (Basel) 2024; 17:468. [PMID: 38675428 PMCID: PMC11054282 DOI: 10.3390/ph17040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.
Collapse
Affiliation(s)
- Sara Calenda
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Daniela Catarzi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Flavia Varano
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Erica Vigiani
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Letizia Trevisan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Gianluca Novello
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Vittoria Colotta
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| |
Collapse
|
8
|
Francucci B, Angeloni S, Dal Ben D, Lambertucci C, Ricciutelli M, Spinaci A, Smirnov A, Volpini R, Buccioni M, Marucci G. Dual Anta-Inhibitors Targeting Protein Kinase CK1δ and A 2A Adenosine Receptor Useful in Neurodegenerative Disorders. Molecules 2023; 28:4762. [PMID: 37375315 DOI: 10.3390/molecules28124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.
Collapse
Affiliation(s)
- Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Simone Angeloni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Aleksei Smirnov
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
9
|
Spinaci A, Buccioni M, Catarzi D, Cui C, Colotta V, Dal Ben D, Cescon E, Francucci B, Grieco I, Lambertucci C, Marucci G, Bassani D, Pavan M, Varano F, Federico S, Spalluto G, Moro S, Volpini R. "Dual Anta-Inhibitors" of the A 2A Adenosine Receptor and Casein Kinase CK1delta: Synthesis, Biological Evaluation, and Molecular Modeling Studies. Pharmaceuticals (Basel) 2023; 16:167. [PMID: 37259317 PMCID: PMC9960553 DOI: 10.3390/ph16020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 08/13/2023] Open
Abstract
Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 μM and KiA2A = 0.076 μM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein-ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Daniela Catarzi
- Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Chang Cui
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Vittoria Colotta
- Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Flavia Varano
- Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
10
|
Federico S, Moro S. Promising Targets and Strategies to Control Neuroinflammation (Part I). Curr Med Chem 2022; 29:4630. [DOI: 10.2174/092986732927220629150904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences
University of Trieste
Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS)
Department of Pharmaceutical and Pharmacological Sciences
University of Padova
Via Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
11
|
CK1 delta inhibition: an emerging strategy to combat neurodegenerative diseases. Future Med Chem 2022; 14:1111-1113. [PMID: 35801420 DOI: 10.4155/fmc-2022-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|