1
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
2
|
Liu Y, Zhou M, Xu M, Wang X, Zhang Y, Deng Y, Zhang Z, Jiang J, Zhou X, Li C. Reprogramming monocytes into M2 macrophages as living drug depots to enhance treatment of myocardial ischemia-reperfusion injury. J Control Release 2024; 374:639-652. [PMID: 39208931 DOI: 10.1016/j.jconrel.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Delivering therapeutic agents efficiently to inflamed regions remains an intractable challenge following myocardial ischemia-reperfusion injury (MI/RI) due to the transient nature of the enhanced permeability and retention effect, which disappears after 24 h. Leveraging the inflammation-homing and plasticity properties of circulating monocytes (MN) as hitchhiking carriers and further inducing their polarization into anti-inflammatory phenotype macrophages upon reaching the inflamed sites is beneficial for MI/RI therapy. Herein, DSS/PB@BSP nanoparticles capable of clearing reactive oxygen species and inhibiting inflammation were developed by employing hollow Prussian blue nanoparticles (PB) as carriers to encapsulate betamethasone sodium phosphate (BSP) and further modified with dextran sulfate sodium (DSS), a targeting ligand for the scavenger receptor on MN. This formulation was internalized into MN as living cell drug depots, reprogramming them into anti-inflammation type macrophages to inhibit inflammation. In vitro assessments revealed the successful construction of the nanoparticle. In a murine MI/RI model, circulating MN laden with these nanoparticles significantly enhanced drug delivery and accumulation at the cardiac injury site, exhibiting favorable therapeutic ability and promoting M2-biased differentiation. Our study provides an effective approach with minimally invasion and biosecurity that makes this nanoplatform as a promising candidate for immunotherapy and clinical translation in the treatment of MI/RI.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingying Zhang
- Department of Anesthesiology, The affiliated hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Arneth B. Current Knowledge about Nonclassical Monocytes in Patients with Multiple Sclerosis, a Systematic Review. Int J Mol Sci 2024; 25:7372. [PMID: 39000478 PMCID: PMC11242477 DOI: 10.3390/ijms25137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Philipps University Marburg, Baldingerst 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Justus Liebig University Giessen, Feulgenstr 12, 35392 Giessen, Germany
| |
Collapse
|
4
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
5
|
Mehdi-alamdarlou S, Ahmadi F, Azadi A, Shahbazi MA, Heidari R, Ashrafi H. A cell-mimicking platelet-based drug delivery system as a potential carrier of dimethyl fumarate for multiple sclerosis. Int J Pharm 2022; 625:122084. [DOI: 10.1016/j.ijpharm.2022.122084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
|
6
|
Feng C, Pan L, Qin X, Li D, Chen T, Lin Z, Li G, Wang Q. Inflammation-homing "living drug depot" for efficient arthritis treatment. Acta Biomater 2022; 150:324-336. [PMID: 35840107 DOI: 10.1016/j.actbio.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Delivering therapeutic agents efficiently to inflamed joints remains an intractable problem in rheumatoid arthritis (RA) treatment due to the complicated physiological barriers. Circulating monocytes could selectively migrate to inflamed sites and differentiate into resident macrophages to aggravate RA. Therefore, a drug carrier that can be specifically internalized by circulating monocytes and switch monocytes into anti-inflammatory phenotype when reaching inflamed sites, might bypass the in vivo physiological barriers and achieve efficient RA therapy. Herein, we design a dextran sulfate (DS) functionalized nanoparticle (ZDNP) to selectively deliver anti-inflammatory agent dexamethasone (Dex) to circulating monocytes via the scavenger receptors on monocytes. Monocytes engulfing drug-loaded ZDNP could subsequently home to arthritic joints and act as a "living drug depot" to combat RA. Results revealed that ZDNP could be preferentially internalized by circulating monocytes when intravenously administrated in vivo. In a rat arthritic model, we found that circulating monocytes remarkably facilitated drug distribution and retention in inflamed joints. Moreover, monocytes engulfing drug-loaded nanoparticles exhibited favorable anti-inflammatory ability and M2-biased differentiation. Our work offers a facile approach to achieve site-directed anti-inflammatory therapy by taking advantage of the inflammation-homing ability of circulating monocytes. STATEMENT OF SIGNIFICANCE: Circulating monocytes can migrate to inflamed sites and then differentiate into macrophages to aggravate arthritis. Therefore, a drug carrier that can be specifically internalized by circulating monocytes and switch monocytes into anti-inflammatory phenotype when reaching inflamed sites may achieve efficient arthritis therapy. Here, we designed a monocyte-targeting nanoparticle (ZDNP) to selectively deliver anti-inflammatory Dex to circulating monocytes. When injected intravenously, ZDNP was effectively internalized by circulating monocytes via a scavenger receptor and subsequently was transported to arthritic joints, where monocytes engulfing the drug-loaded nanoparticles could switch to an anti-inflammatory phenotype to inhibit arthritis progress. We provide detailed evidence about the in vivo fate of ZDNP and unravel how monocytes act as a "living drug depot" to achieve site-directed arthritis therapy.
Collapse
Affiliation(s)
- Chenglan Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lihua Pan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Daming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhicong Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guojiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
7
|
Ezra Manicum AL, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Ngcobo SR, Nkambule BB, Nyambuya TM, Mokgalaboni K, Ntsethe A, Mxinwa V, Ziqubu K, Ntamo Y, Nyawo TA, Dludla PV. Activated monocytes as a therapeutic target to attenuate vascular inflammation and lower cardiovascular disease-risk in patients with type 2 diabetes: A systematic review of preclinical and clinical studies. Biomed Pharmacother 2022; 146:112579. [PMID: 35062054 DOI: 10.1016/j.biopha.2021.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Low grade inflammation is associated with the progression of atherosclerosis. Patients with type 2 diabetes (T2D) have altered cholesterol levels, which are targeted by free radicals to promote lipid peroxidation. Elevated levels of monocyte-associated cytokines such as interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and tumor necrosis factor-alpha (TNF-α), subsequently drive endothelial tissue injury. In fact, the levels of circulating platelet-monocyte aggregates in patients with T2D is a robust marker for atherosclerosis and a cardiovascular disease (CVD)-risk factor. To identify eligible studies, we searched the major online databases using PubMed and Google Scholar. The cumulative evidence synthesized in the current review suggests that, traditional therapies which include thiazolidinediones, statins and some calcium channel blockers can be useful in the primary prevention of atherosclerosis by inhibiting the formation of monocyte-derived microparticles, and pro-inflammatory cytokines such as IL-6, TNF-α, MCP-1, and NF-κB in patients with T2D. Future studies are needed to ascertain whether the combination of dietary interventions and glucose or lipid lowering agents can provide an enhanced cardioprotection in patients with T2D.
Collapse
Affiliation(s)
- Siphamandla R Ngcobo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Aviwe Ntsethe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Thembeka A Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
10
|
Pharmacological Modulation of Blood-Brain Barrier Permeability by Kinin Analogs in Normal and Pathologic Conditions. Pharmaceuticals (Basel) 2020; 13:ph13100279. [PMID: 33003415 PMCID: PMC7650794 DOI: 10.3390/ph13100279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is a major obstacle to the development of effective diagnostics and therapeutics for brain cancers and other central nervous system diseases. Peptide agonist analogs of kinin B1 and B2 receptors, acting as BBB permeabilizers, have been utilized to overcome this barrier. The purpose of the study was to provide new insights for the potential utility of kinin analogs as brain drug delivery adjuvants. In vivo imaging studies were conducted in various animal models (primary/secondary brain cancers, late radiation-induced brain injury) to quantify BBB permeability in response to kinin agonist administrations. Results showed that kinin B1 (B1R) and B2 receptors (B2R) agonists increase the BBB penetration of chemotherapeutic doxorubicin to glioma sites, with additive effects when applied in combination. B2R agonist also enabled extravasation of high-molecular-weight fluorescent dextrans (155 kDa and 2 MDa) in brains of normal mice. Moreover, a systemic single dose of B2R agonist did not increase the incidence of metastatic brain tumors originating from circulating breast cancer cells. Lastly, B2R agonist promoted the selective delivery of co-injected diagnostic MRI agent Magnevist in irradiated brain areas, depicting increased vascular B2R expression. Altogether, our findings suggest additional evidence for using kinin analogs to facilitate specific access of drugs to the brain.
Collapse
|
11
|
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020; 8:2344-2365. [DOI: 10.1039/d0bm00036a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the applications of living cells as drug carriers or active drugs for anticancer drug delivery and cancer therapy.
Collapse
Affiliation(s)
- He Dong
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Xiao Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Leikun Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
12
|
Liu L, He H, Liu J. Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications. Polymers (Basel) 2019; 11:E2017. [PMID: 31817418 PMCID: PMC6961000 DOI: 10.3390/polym11122017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapeutics are very promising modalities to address many unmet medical needs, including genetic engineering, drug delivery, and regenerative medicine as well as bioimaging. To enhance the function and improve the efficacy of cell-based therapeutics, a variety of cell surface engineering strategies (genetic engineering and non-genetic engineering) are developed to modify the surface of cells or cell-based therapeutics with some therapeutic molecules, artificial receptors, and multifunctional nanomaterials. In comparison to complicated procedures and potential toxicities associated with genetic engineering, non-genetic engineering strategies have emerged as a powerful and compatible complement to traditional genetic engineering strategies for enhancing the function of cells or cell-based therapeutics. In this review, we will first briefly summarize key non-genetic methodologies including covalent chemical conjugation (surface reactive groups-direct conjugation, and enzymatically mediated and metabolically mediated indirect conjugation) and noncovalent physical bioconjugation (biotinylation, electrostatic interaction, and lipid membrane fusion as well as hydrophobic insertion), which have been developed to engineer the surface of cell-based therapeutics with various materials. Next, we will comprehensively highlight the latest advances in non-genetic cell membrane engineering surrounding different cells or cell-based therapeutics, including whole-cell-based therapeutics, cell membrane-derived therapeutics, and extracellular vesicles. Advances will be focused specifically on cells that are the most popular types in this field, including erythrocytes, platelets, cancer cells, leukocytes, stem cells, and bacteria. Finally, we will end with the challenges, future trends, and our perspectives of this relatively new and fast-developing research field.
Collapse
Affiliation(s)
- Lisha Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, USA;
| | - Hongliang He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, USA;
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|