1
|
Hyderi Z, Kannappan A, Ravi AV. The Multifaceted Applications of Seaweed and Its Derived Compounds in Biomedicine and Nutraceuticals: A Promising Resource for Future. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:491-505. [PMID: 39655722 DOI: 10.1002/pca.3482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 04/12/2025]
Abstract
The increasing demand for global food resources and over-dependence on terrestrial agroecosystems pose a significant challenge to the sustainable production of food commodities. Macroalgae are an essential source of food production in the marine environment, and their cultivation is a promising approach to alleviate the impending global food insecurity due to key factors, such as independence from terrestrial agriculture, rapid growth rate, unique biochemical composition, and carbon capture potential. Moreover, in many countries, seaweed has been used as food for decades because of its health and nutritional benefits. Seaweed contains bioactive components that are beneficial against various pathological conditions, including cancer, type 2 diabetes, and neurological disorders. Furthermore, the natural products derived from macroalgae have also been found to have immunostimulatory and antimicrobial properties. Macroalgae are also a significant source of rare sugars such as L-fucose, L-rhamnose, and glucuronic acid. Besides sugars, other bioactive components have been widely reported for their potential in cosmeceuticals. We have outlined the nutrient composition and functional properties of different species of macroalgae, with an emphasis on their potential as value-added products to the functional food market. Beyond being nutritional powerhouses, the variety of biological activities in human health and biomedicine makes them excellent candidates for developing novel drugs. Therefore, this review summarizes the pharmaceutical applications of macroalgae and suggests potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Zeeshan Hyderi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Arunachalam Kannappan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Pei J, Kanwal S, Sivaramakrishnan R, Katelakha K. Therapeutic potential of microalgae-derived natural compounds in diabetic wound healing: A comprehensive review. Heliyon 2025; 11:e42723. [PMID: 40040991 PMCID: PMC11876918 DOI: 10.1016/j.heliyon.2025.e42723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
A variety of cell types and chemical systems are known to interact throughout the complex process of wound healing. In addition to being very uncomfortable for patients, wounds that do not heal properly or become chronic can place a heavy burden on society. The creation of novel treatment approaches can expedite the healing process, reduce the societal burden, and improve patient outcomes. Due to advancements in the field of biomedical science, microalgae have significant potential for use in diabetic wound healing and other wound healing applications. This review delves into the physiological process of wound healing, the use of microalgae in wound healing, and a detailed explanation of the wound healing roles of various microalgal originated bioactive compounds including alginate, pigments, fatty acids, proteins, polysaccharides, flavonoids and phenols. The study discusses the efficacy of photosynthetic hydrogels in drugs and oxygen delivery to the wounded area that is crucial for promoting a good healing process, as well as highlights the drawbacks and challenges involved in using microalgae for wound healing. Given the current state of the art in utilizing microalgae for wound care, this review provides new perspectives for further research, along with insightful advice and innovative suggestions for academics engaged in this area.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Simab Kanwal
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Kasinee Katelakha
- The Halal Science Center, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Moolsup F, Sukketsiri W, Sianglum W, Saetan J, Khumpirapang N, Tanasawet S. Sargassum plagiophyllum Ethanolic Extract Enhances Wound Healing by Modulating FAK/Src/Akt/p38 and Rac1 Signaling in Keratinocytes HaCaT Cells. Adv Pharmacol Pharm Sci 2025; 2025:7198281. [PMID: 39886257 PMCID: PMC11779993 DOI: 10.1155/adpp/7198281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Recently, seaweed extracts have been found to have potential in skin benefits. This study, therefore, aimed to explore phytochemical analysis, antimicrobial, antioxidant, and wound healing properties of brown seaweed Sargassum plagiophyllym ethanolic extract (SPEE) on human skin keratinocyte HaCaT cells and the possible mechanism involved. Our results indicated that SPEE contained flavonoid, phenolic, and carotenoid as the major active constituents. The HPLC chromatogram revealed C-phycocyanin and fucoidan presented in SPEE. SPEE demonstrated the antioxidant capability and significantly reduced wound space at 24 and 48 h in wound-healing assay. Treatment with SPEE (50 and 100 μg/mL) increased FAK and Src phosphorylation in western blotting. Moreover, SPEE also upregulated Akt and p38 MAPK phosphorylation but not ERK1/2. SPEE increased Rac1 protein expression. Interestingly, hyaluronan synthase (HAS1 and HAS2) as well as collagen type I and elastin were also significantly upregulated when compared with the control upon exposure to SPEE. In conclusion, our data suggested that SPEE promotes cutaneous wound healing by regulating FAK/Src-mediated Akt, p38 MAPK, and Rac1 signaling. These findings suggest the potential use of SPEE for skin wound treatment.
Collapse
Affiliation(s)
- Furoida Moolsup
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Laboratory Animal Service Center, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wipawadee Sianglum
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supita Tanasawet
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Arbab S, Ullah H, Muhammad N, Wang W, Zhang J. Latest advance anti-inflammatory hydrogel wound dressings and traditional Lignosus rhinoceros used for wound healing agents. Front Bioeng Biotechnol 2024; 12:1488748. [PMID: 39703792 PMCID: PMC11657242 DOI: 10.3389/fbioe.2024.1488748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter, often affect millions of people globally, take months to heal or not heal non-healing chronic wounds, are typically susceptible to microbial infection, and are a major cause of morbidity. Wounds can be treated with a variety of non-surgical (topical formulations, wound dressings) and surgical (debridement, skin grafts/flaps) methods. Three-dimensional (3D)-(bio) printing and traditional wound dressings are two examples of modern experimental techniques. This review focuses on several types of anti-inflammatory wound dressings, especially focusing on hydrogels and traditional macro-fungi like L. rhinocerotis as agents that promote wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and offered innovative methods for application and preparation to aid in the healing. Additionally, we summarize the key elements required for wound healing and discuss our analysis of potential future issues. These findings suggest that L. rhinocerotis and various anti-inflammatory hydrogels can be considered as conventional and alternative macro-fungi for the treatment of non-communicable diseases. We summarized the development of functional hydrogel dressings and traditional Lignosus rhinoceros used for wound healing agents in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.
Collapse
Affiliation(s)
- Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Weiwei Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Guo L, Yang Y, Pu Y, Mao S, Nie Y, Liu Y, Jiang X. Dendrobium officinale Kimura & Migo polysaccharide and its multilayer emulsion protect skin photoaging. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116974. [PMID: 37517571 DOI: 10.1016/j.jep.2023.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura & Migo is traditionally used to treat skin diseases, gastrointestinal diseases, and other diseases. Dendrobium officinale polysaccharides (DOP) are the main component of Dendrobium officinale that accounts for its bioactivity, which shows a variety of effects such as moisturizing, antioxidant and anti-fatigue. However, there is no comprehensive study on the effect of DOP on skin photoaging combined with in vitro and in vivo models, and its specific mechanism is still unclear. AIM OF THE STUDY Our study aimed to explore the effect and underlying mechanism of DOP on skin photoaging, as well as to improve the stability and transdermal absorption of DOP. MATERIALS AND METHODS DOP was extracted, purified and structurally characterized. In vitro HaCaT cell photoaging model was used to examine the photoprotection effect of DOP. Cell viability was detected by CCK-8; Intracellular reactive oxygen species were determined by DCFH-DA; DNA damage, cell apoptosis and cell cycle arrest were examined by flow cytocytometry. For autophagy flux detection, the adenovirus loaded with mRFP-GFP-LC3 was introduced into cells. Further, to enhance the stability and absorption of DOP, we designed and prepared the W/O/W type DOP multilayer emulsions (ME) by a two-step emulsification method. The emulsion stability, drug loading and encapsulation rate, DOP stability and DOP transdermal rate were detected. In vivo photoaging animal model was applied to compare the difference of photoaging protection effect between DOP solution and DOP ME. Specifically, skin appearance, histological change, antioxidant system, proinflammatory indicators, matrix metalloproteinases and autophagy level of skin tissues were examined and compared. RESULTS The results showed that DOP achieve photoaging protection by inhibiting oxidative stress, alleviating cell cycle arrest and apoptosis, and enhancing autophagy flux in photoaged HaCaT cells. The W/O/W type DOP multilayer emulsion (ME) with high encapsulation rate and strong stability was found to significantly improve the stability and transdermal absorption of DOP. In addition, our results showed that DOP (ME) remarkably improved skin condition of photoaged mice. Specifically, DOP (ME) enhanced the expression of antioxidant enzymes and autophagy and decreased the levels of pro-inflammatory factors and matrix metalloproteinases in the skin of photoaged mice as compared with DOP solution. CONCLUSIONS In conclusion, DOP was effective in improving skin photoaging, and the DOP multilayer emulsion we designed enhanced the stability and skin absorption of DOP, boosting DOP's protective effect against photoaging.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Yang
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, 610041, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Shuangfa Mao
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, 610041, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, 610041, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China; Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China; Tianfu Jincheng Laboratory & Institute of Future Medical Innovation, City of Future Medicine, Chengdu, 641400, China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Sulakhiya K, Soni P, Tembhre MK, Kungumaraj HJ, Paliwal R, Kumar S. Physiology and pharmacology of wounds. NANOTECHNOLOGICAL ASPECTS FOR NEXT-GENERATION WOUND MANAGEMENT 2024:21-54. [DOI: 10.1016/b978-0-323-99165-0.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Li L, Wang Y, Huang Z, Xu Z, Cao R, Li J, Wu B, Lu JR, Zhu H. An additive-free multifunctional β-glucan-peptide hydrogel participates in the whole process of bacterial-infected wound healing. J Control Release 2023; 362:577-590. [PMID: 37683733 DOI: 10.1016/j.jconrel.2023.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Bacterial infections and excessive inflammation can impede the healing of wounds. Hydrogels have emerged as a promising approach for dressing bacterial-infected injuries. However, some antibacterial hydrogels are complex, costly, and even require assistance with other instruments such as light, making them unsuitable for routine outdoor injuries. Here, we developed an in-situ generating hydrogel via hybridizing oxidized β-D-glucan with antimicrobial peptide C8G2 through the Schiff base reaction. This hydrogel is easily accessible and actively contributes to the whole healing process of bacterial-infected wounds, demonstrating remarkable antibacterial activity and biological compatibility. The pH-sensitive reversible imine bond enables the hydrogel to self-heal and sustainably release the antibacterial peptide, thereby improving its bioavailability and reducing toxicity. Meanwhile, the immunoregulating β-D-glucan inhibits the release of inflammatory factors while promoting the release of anti-inflammatory factors. In methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin wound models, the hybrid hydrogel showed superior antibacterial and anti-inflammatory activity, enhanced the M2 macrophage polarization, expedited wound closure, and regenerated epidermis tissue. These features make this hydrogel an appealing wound dressing for treating multi-drug-resistant bacteria-infected wounds.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Zhengjun Huang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Biyi Wu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
9
|
Matias M, Martins A, Alves C, Silva J, Pinteus S, Fitas M, Pinto P, Marto J, Ribeiro H, Murray P, Pedrosa R. New Insights into the Dermocosmetic Potential of the Red Seaweed Gelidium corneum. Antioxidants (Basel) 2023; 12:1684. [PMID: 37759987 PMCID: PMC10525542 DOI: 10.3390/antiox12091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
This work addresses the potential of the red seaweed Gelidium corneum as a source of bioactive ingredients for skin health and wellness in response to the growing awareness regarding the significance of sustainable strategies in developing new nature-based dermocosmetic products. Hydroalcoholic extracts from the dried biomass were subjected to sequential liquid-liquid partitions, affording five different fractions (F1-F5). Their cosmetic potential was assessed through a set of in vitro assays concerning their antioxidant, photoprotective, and healing properties. Additionally, their cytotoxicity in HaCaT cells and their capacity to induce inflammation in RAW 264.7 cells were also evaluated. As a proof-of-concept, O/W emulsions were prepared, and emulsion stability was assessed by optical microscopy, droplet size analysis, centrifugation tests, and rheology analysis. Furthermore, in vivo tests were conducted with the final formulation to assess its antioxidant capacity. At subtoxic concentrations, the most lipophilic fraction has provided photoprotection against UV light-induced photooxidation in HaCaT cells. This was conducted together with the aqueous fraction, which also displayed healing capacities. Regarding the physical and stability assays, the best performance was achieved with the formulation containing 1% aqueous extract, which exhibited water retention and antioxidant properties in the in vivo assay. In summary, Gelidium corneum displayed itself as a potential source of bioactive ingredients with multitarget properties for dermatological use.
Collapse
Affiliation(s)
- Margarida Matias
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
- LIFE-Health and Bioscience Research Institute, Technological University of Shannon, Moylish Park, V94 E8YF Limerick, Ireland;
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Manuel Fitas
- PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisboa, Portugal; (M.F.); (P.P.)
| | - Pedro Pinto
- PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisboa, Portugal; (M.F.); (P.P.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.M.); (H.R.)
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.M.); (H.R.)
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.M.); (H.R.)
| | - Patrick Murray
- LIFE-Health and Bioscience Research Institute, Technological University of Shannon, Moylish Park, V94 E8YF Limerick, Ireland;
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| |
Collapse
|
10
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
11
|
Labes A. Marine Resources Offer New Compounds and Strategies for the Treatment of Skin and Soft Tissue Infections. Mar Drugs 2023; 21:387. [PMID: 37504918 PMCID: PMC10381745 DOI: 10.3390/md21070387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Bioprospecting of the marine environment for drug development has gained much attention in recent years owing to its massive chemical and biological diversity. Drugs for the treatment of skin and soft tissue infections have become part of the search, mainly with respect to enlarging the number of available antibiotics, with a special focus on multidrug-resistant Gram-positive bacteria, being the major causative agents in this field. Marine resources offer novel natural products with distinct biological activities of pharmaceutical importance, having the chance to provide new chemical scaffolds and new modes of action. New studies advance the field by proposing new strategies derived from an ecosystemic understanding for preventive activities against biofilms and new compounds suitable as disinfectants, which sustain the natural flora of the skin. Still, the development of new compounds is often stuck at the discovery level, as marine biotechnology also needs to overcome technological bottlenecks in drug development. This review summarizes its potential and shows these bottlenecks and new approaches.
Collapse
Affiliation(s)
- Antje Labes
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences ZAiT, Kanzleistraße 91-93, D-24943 Flensburg, Germany
| |
Collapse
|
12
|
de Albuquerque PBS, Rodrigues NER, Silva PMDS, de Oliveira WF, Correia MTDS, Coelho LCBB. The Use of Proteins, Lipids, and Carbohydrates in the Management of Wounds. Molecules 2023; 28:1580. [PMID: 36838568 PMCID: PMC9959646 DOI: 10.3390/molecules28041580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Despite the fact that skin has a stronger potential to regenerate than other tissues, wounds have become a serious healthcare issue. Much effort has been focused on developing efficient therapeutical approaches, especially biological ones. This paper presents a comprehensive review on the wound healing process, the classification of wounds, and the particular characteristics of each phase of the repair process. We also highlight characteristics of the normal process and those involved in impaired wound healing, specifically in the case of infected wounds. The treatments discussed here include proteins, lipids, and carbohydrates. Proteins are important actors mediating interactions between cells and between them and the extracellular matrix, which are essential interactions for the healing process. Different strategies involving biopolymers, blends, nanotools, and immobilizing systems have been studied against infected wounds. Lipids of animal, mineral, and mainly vegetable origin have been used in the development of topical biocompatible formulations, since their healing, antimicrobial, and anti-inflammatory properties are interesting for wound healing. Vegetable oils, polymeric films, lipid nanoparticles, and lipid-based drug delivery systems have been reported as promising approaches in managing skin wounds. Carbohydrate-based formulations as blends, hydrogels, and nanocomposites, have also been reported as promising healing, antimicrobial, and modulatory agents for wound management.
Collapse
Affiliation(s)
| | | | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235 Cidade Universitária, Recife 50.670-901, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235 Cidade Universitária, Recife 50.670-901, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235 Cidade Universitária, Recife 50.670-901, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235 Cidade Universitária, Recife 50.670-901, Brazil
| |
Collapse
|
13
|
Sadiq T, Khalid SH, Khan IU, Mahmood H, Asghar S. Designing Deferoxamine-Loaded Flaxseed Gum and Carrageenan-Based Controlled Release Biocomposite Hydrogel Films for Wound Healing. Gels 2022; 8:gels8100652. [PMID: 36286153 PMCID: PMC9601842 DOI: 10.3390/gels8100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022] Open
Abstract
In this study, biocomposite hydrogel films made from flaxseed gum (FSG)/kappa carrageenan (CGN) were fabricated, using potassium chloride as a crosslinker and glycerol as a plasticizer. The composite films were loaded with deferoxamine (DFX), an iron chelator that promotes neovascularization and angiogenesis for the healing of wounds. The properties of the biocomposite hydrogel films, including swelling, solubility, water vapor transmission rate, tensile strength, elongation at break, and Young’s modulus studies, were tested. The films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). In addition, drug release studies in PBS at pH 7.2 were investigated. In vivo analysis was performed by assessing the wound contraction in a full-thickness excisional wound rat model. Hematoxylin & eosin (H & E) and Masson’s trichome staining were performed to evaluate the effect of the films on wound healing progress. The visual and micro-morphological analysis revealed the homogenous structure of the films; however, the elongation at break property decreased within the crosslinked film but increased for the drug-loaded film. The FTIR analysis confirmed the crosslinking due to potassium chloride. A superior resistance towards thermal degradation was confirmed by TGA for the crosslinked and drug-loaded films. Drug release from the optimum film was sustained for up to 24 h. In vivo testing demonstrated 100% wound contraction for the drug-loaded film group compared to 72% for the pure drug solution group. In light of the obtained results, the higher potential of the optimized biocomposite hydrogel film for wound healing applications was corroborated.
Collapse
|
14
|
Akasheh H, Jahandideh A, Khajerahimi A, Kakoolaki S, Hesaraki S. The Effect of Gracilaria Corticata and Scenedesmus Acuminates Extract Mixture on the Healing of Wounds Contaminated with Staphylococcus in the Rat Model. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2022; 10:e70. [PMID: 36381975 PMCID: PMC9637266 DOI: 10.22037/aaem.v10i1.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Wound healing processes are dependent on the severity of the trauma, invasion of opportunistic microorganisms, and inflammatory, immunological, and metabolic responses. We tried to show the ability of algae to inhibit wound infection, which can lead to proper wound healing. METHODS Eighty rats were housed according to laboratory animal care protocols and divided into four groups at each operating time. Group I consisted of the non-treated animals. Group II was treated with 25% zinc oxide as a choice treatment. In the treated groups 3 and 4, an equal ratio of Gracilaria Corticata and Scenedesmus acuminate marine algae (mixed algae) was applied as 3% and 7% ointment pomade. Percentage of wound closure, number of bacteria in the wound surface, angiogenesis (Vascular endothelial growth factor; VEGF), the number of macrophages, collagen production level and transforming growth factor-beta (TGFβ), epithelialization, and fibrosis were evaluated. RESULTS Applying mixed algae extract 7% and zinc oxide 25% could result in a mild improvement in wound closure (df: 9, 48; F=5.97; p<0.0001). In addition, mixed algae 3%, mixed algae 7% and zinc oxide could reduce the rate of bacterial growth compared to non-treated animals (df: 3, 16; F=5.74; p=0.0007). However, these improvements do not seem to be clinically significant. Induction of angiogenesis, increase in macrophage infiltration rate, and expression of TGFβ are possible underlying mechanisms of mixed algae in accelerating wound healing process. CONCLUSION The result showed that the administration of 3% and 7% mixed algae could mildly accelerate the wound healing process in a rat model of pelleted skin wound. However, it seems that its effect is not clinically significant compared to non-treated and zinc oxide treated animals.
Collapse
Affiliation(s)
- Hooman Akasheh
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Corresponding author: Alireza Jahandideh; Department of Clinical Science, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran. , ORCID: 0000-0002-4212-6416, Tel: 00989122476037
| | - Amireghbal Khajerahimi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shapour Kakoolaki
- Iranian Fisheries Science Research Institute, Agriculture Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Saeed Hesaraki
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Lu X, Qin L, Guo M, Geng J, Dong S, Wang K, Xu H, Qu C, Miao J, Liu M. A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis. Carbohydr Polym 2022; 289:119437. [PMID: 35483850 DOI: 10.1016/j.carbpol.2022.119437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023]
Abstract
Diabetic skin ulcer is one of the most severe complications in diabetes, however, current therapeutic approaches are not effective enough. Agents modulating oxidative stress, inflammation, and angiogenesis are quite promising for alleviation of diabetic skin ulcers. In this study, a novel Sargassum kjellmanianum-derived polysaccharide (SARP) was prepared. SARP was an alginate with Mw of 45.4 kDa, consisting of 76.56% mannuronic acid, 18.89% guluronic acid, and 4.55% glucuronic acid. SARP could attenuate oxidative stress-induced cell damage via activating nuclear factor erythroid 2-related factor 2 (Nrf2). SARP also promoted the migration and tube formation of HUVECs, which was related to the increased vascular endothelial growth factor (VEGF) expression. In diabetic wound model, SARP (iv, 200 mg/kg) administration increased angiogenesis, alleviated oxidative stress, ameliorated diabetes-related aberrations, and thereby accelerated diabetic wound healing. These findings identified SARP had potential to be developed as a drug candidate for diabetic skin ulcers.
Collapse
Affiliation(s)
- Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Meng Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiajia Geng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Songtao Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Hui Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Changfeng Qu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Jinlai Miao
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; Guangxi Academy of Sciences, Nanning 530007, China..
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Cotton bandages finished with microcapsules of volatile organic constituents of marine macro-algae for wound healing. Bioprocess Biosyst Eng 2021; 45:203-216. [PMID: 34648054 DOI: 10.1007/s00449-021-02653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Microencapsulation is an innovative technique having a growing application in textile finishing. Besides, marine macroalgae contain plenty of phytoconstituents used in various fields especially textile finishing. This work imparts the property of wound healing finish to cotton fabrics producing a bandage from eco-friendly algal volatile organic constituents (VOCs). VOCs extracted from Digenea simplex, Lurencea papillosa, Galaxurea oblongata, and Turbenaria decurrens Egyptian marine macroalgae scattered along the coastline of the Red sea were 0.52, 0.9, 0.87, and 0.62% (v/w), respectively. These VOCs as well as their microencapsulated (VOM) forms were finished onto cotton fabrics by a conventional pad-dry cure technique using sodium alginate (SA) as a shell wall material. The VOCs of each alga were extracted and chemically investigated using gas chromatography coupled with mass spectrometry (GC-MS). The results indicate, in addition to the identification of 125 volatile compounds, the diversity and outstanding differences in volatile composition among the 4 algae. Wound healing activities of the finished fabrics were evaluated. VOCs microcapsules-finished (VOMF) fabrics were more effective compared to VOCs-finished (VOF) fabrics and almost comparable to mebo-ointment (standard drug)-finished (MoF) fabrics. The differences in VOCs efficiencies may be attributable to the diversity in type and amount of volatiles found in the four algae. Therefore, this is a low-cost, convenient, reproducible, and scalable way to obtain encapsulated VOCs for the application in textile wound healing.
Collapse
|
17
|
Bar-Shai N, Sharabani-Yosef O, Zollmann M, Lesman A, Golberg A. Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering. Sci Rep 2021; 11:11843. [PMID: 34088909 PMCID: PMC8178384 DOI: 10.1038/s41598-021-90903-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Extracellular matrix (ECM) provides structural support for cell growth, attachments and proliferation, which greatly impact cell fate. Marine macroalgae species Ulva sp. and Cladophora sp. were selected for their structural variations, porous and fibrous respectively, and evaluated as alternative ECM candidates. Decellularization-recellularization approach was used to fabricate seaweed cellulose-based scaffolds for in-vitro mammalian cell growth. Both scaffolds were confirmed nontoxic to fibroblasts, indicated by high viability for up to 40 days in culture. Each seaweed cellulose structure demonstrated distinct impact on cell behavior and proliferation rates. The Cladophora sp. scaffold promoted elongated cells spreading along its fibers' axis, and a gradual linear cell growth, while the Ulva sp. porous surface, facilitated rapid cell growth in all directions, reaching saturation at week 3. As such, seaweed-cellulose is an environmentally, biocompatible novel biomaterial, with structural variations that hold a great potential for diverse biomedical applications, while promoting aquaculture and ecological agenda.
Collapse
Affiliation(s)
- Nurit Bar-Shai
- grid.12136.370000 0004 1937 0546Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orna Sharabani-Yosef
- grid.12136.370000 0004 1937 0546School of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Meiron Zollmann
- grid.12136.370000 0004 1937 0546Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- grid.12136.370000 0004 1937 0546School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Golberg
- grid.12136.370000 0004 1937 0546Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Yao Y, Zhang A, Yuan C, Chen X, Liu Y. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomater Sci 2021; 9:4523-4540. [PMID: 34047308 DOI: 10.1039/d1bm00411e] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute and chronic wounds can cause severe physical trauma to patients and also result in an immense socio-economic burden. Thus, wound management has attracted increasing attention in recent years. However, burn wound management is still a major challenge in wound management. Autografts are often considered the gold-standard for burn care, but their application is limited by many factors. Hence, ideal burn dressings and skin substitute dressings are desirable. With the development of biomaterials and progress of tissue engineering technology, some innovative dressings and tissue engineering scaffolds, such as nanofibers, films, foams and hydrogels, have been widely used in the field of biomedicine, especially in wound management. Among them, hydrogels have attracted tremendous attention with their unique advantages. In this review, we discuss the challenges in burn wound management, several crucial design considerations with respect to hydrogels for burn wound healing, and available polymers for hydrogels in burn wound care. In addition, the potential application and plausible prospect of hydrogels are also highlighted.
Collapse
Affiliation(s)
- Yingxia Yao
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Andi Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China. and Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
19
|
Hu H, Xu FJ. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater Sci 2020; 8:2084-2101. [PMID: 32118241 DOI: 10.1039/d0bm00055h] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute and chronic wounds cause severe physical trauma to patients and also bring an immense socio-economic burden. Hydrogels are considered to be effective wound dressings. Polysaccharides possessing distinctive properties such as biocompatibility, biodegradability, and nontoxicity are promising candidates to structure hydrogels for wound healing. Polysaccharide-based hydrogels can provide suitable moisture for the wound and act as a shield against bacteria. Adequate mechanical properties, degradability, and therapeutic agent controlled release of polysaccharide-based hydrogels have been already characterized for effective utilization. This review presented several crucial design considerations about hydrogels for wound healing, and the current state of polysaccharide (chitosan, alginate, hyaluronic acid, cellulose, dextran, and starch)-based hydrogels as wound dressings was also summarized. The commonly used crosslinking techniques, including physical, chemical, and enzymatic crosslinking, are discussed in detail. Finally, we outline the challenges and perspectives about the improvement of polysaccharide-based hydrogels.
Collapse
Affiliation(s)
- Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
20
|
Extraction, Characterization and Incorporation of Hypericum scruglii Extract in Ad Hoc Formulated Phospholipid Vesicles Designed for the Treatment of Skin Diseases Connected with Oxidative Stress. Pharmaceutics 2020; 12:pharmaceutics12111010. [PMID: 33113923 PMCID: PMC7690748 DOI: 10.3390/pharmaceutics12111010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
An extract of Hypericum scruglii, an endangered endemic plant of Sardinia (Italy), was prepared and characterized. It was loaded in special phospholipid vesicles, glycerosomes, which were modified by adding maltodextrin (glucidex) and a polymer (gelatin or hyaluronan). The corresponding liposomes were also prepared and used as reference. The vesicles disclosed suitable physicochemical features for skin delivery. Indeed, their mean diameter ranged from 120 to 160 nm, they were homogeneously dispersed (polydispersity index ≤ 0.30), and their zeta potential was highly negative (~−45 mV). The vesicle dispersions maintained unchanged characteristics during 60 days of storage, were highly biocompatible, and were able to protect keratinocytes against damages due to oxidative stress induced by treating them with hydrogen peroxide. Vesicles were also capable of promoting cell proliferation and migration in vitro by means of a scratch wound assay. The results confirmed the fruitful delivery of the extract of H. scruglii in glycerosomes modified with glucidex and gelatin and their promising ability for skin protection and treatment.
Collapse
|
21
|
Thymoquinone-Loaded Polymeric Films and Hydrogels for Bacterial Disinfection and Wound Healing. Biomedicines 2020; 8:biomedicines8100386. [PMID: 32998437 PMCID: PMC7600314 DOI: 10.3390/biomedicines8100386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to synthesize and characterize novel biocompatible topical polymeric film and hydrogel systems that have the potential to deliver the antibacterial agent thymoquinone (TQ) directly to the skin target site to manage the local wound infection and thereby wound healing. The polyvinyl pyrrolidone (PVP) matrix-type films containing TQ were prepared by the solvent casting method. In vitro skin permeation studies on human cadaver skin produced a mean flux of 2.3 µg TQ/cm2/h. Human keratinocyte monolayers subjected to a scratch wound (an in vitro wound healing assay) showed 85% wound closure at day 6 in the TQ group (100 ng/mL TQ) as compared to 50% in the vehicle control group (p = 0.0001). In a zone-of-inhibition (ZOI) assay, TQ-containing films and hydrogels completely wiped out Staphylococcus aureus in 10 cm diameter Tryptic Soy Agar plates while 500 µg/mL gentamicin containing filters gave 10 mm of ZOI. In an ex vivo model, TQ-containing films eradicated bacterial colonization on human cadaver skin. Furthermore, in a full-thickness wound infection model in mice, TQ-containing films showed significant activity in controlling Staphylococcus aureus infection, thereby disinfecting the skin wound. In summary, TQ-containing PVP films and hydrogels developed in this study have the potential to treat and manage wound infections.
Collapse
|
22
|
Ditta LA, Rao E, Provenzano F, Sánchez JL, Santonocito R, Passantino R, Costa MA, Sabatino MA, Dispenza C, Giacomazza D, San Biagio PL, Lapasin R. Agarose/κ-carrageenan-based hydrogel film enriched with natural plant extracts for the treatment of cutaneous wounds. Int J Biol Macromol 2020; 164:2818-2830. [PMID: 32853619 DOI: 10.1016/j.ijbiomac.2020.08.170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Hydrogels for complex and chronic wound dressings must be conformable, absorb and retain wound exudates and maintain hydration. They can incorporate and release bioactive molecules that can accelerate the healing process. Wound dressings have to be in contact with the wound and epidermis, even for long periods, without causing adverse effects. Hydrogel dressing formulations based on biopolymers derived from terrestrial or marine flora can be relatively inexpensive and well tolerated. In the present article hydrogel films composed by agarose (1.0 wt%), κ-carrageenan at three different concentrations (0.5, 1.0 and 1.5 wt%) and glycerol (3.0 wt%) were prepared without recourse to crosslinking agents, and characterized for their mechanical properties, morphology, swelling and erosion behavior. The films resulted highly elastic and able to absorb and retain large amounts of fluids without losing their integrity. One of the films was loaded with the aqueous extract from Cryphaea heteromalla (Hedw.) D. Mohr for its antioxidant properties. Absence of cytotoxicity and ability to reduce the oxidative stress were demonstrated on NIH-3T3 fibroblast cell cultures. These results encourage further biological evaluations to assess their impact on the healing process.
Collapse
Affiliation(s)
- Lorena Anna Ditta
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Estella Rao
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Fiorenza Provenzano
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Jesús Lozano Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; Center of Research and Development of Functional Food, Health Science Technological Park, Av.da del Conocimiento s/n, 18100 Granada, Spain
| | - Radha Santonocito
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Rosa Passantino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Maria Assunta Costa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy.
| | - Maria Antonietta Sabatino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy
| | - Clelia Dispenza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy; Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy.
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy.
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Romano Lapasin
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Piazzale Europa, 34127 Trieste, Italy
| |
Collapse
|
23
|
Wu TM, Nan FH, Chen KC, Wu YS. Sarcodia suieae acetyl-xylogalactan regulate RAW 264.7 macrophage NF-kappa B activation and IL-1 beta cytokine production in macrophage polarization. Sci Rep 2019; 9:19627. [PMID: 31873180 PMCID: PMC6927982 DOI: 10.1038/s41598-019-56246-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 11/09/2022] Open
Abstract
In this study, the effects of acetyl-xylogalactan extracted from Sarcodia suieae on RAW 264.7 macrophage polarisation were evaluated. This extracted acetyl-xylogalactan had a monosaccharide composition of 91% galactose and 9% xylose, with polysaccharide and acetyl contents of 80.6% and 19.3%, respectively. MALDI-TOF mass spectrometry and NMR spectroscopy revealed the molecular weight of the acetyl-xylogalactan to be 88.5 kDa. After acetyl-xylogalactan treatment, RAW 264.7 macrophage polarisation was noted, along with enhanced phagocytic ability. Furthermore, the Cell Counting Kit-8 (CCK-8) assay was performed and the results demonstrated non-significant alteration in lactate dehydrogenase levels in the treated cells. Next, interleukin (IL) 1β, TNF, and Malt-1 expression in RAW 264.7 macrophages treated with the S. suieae acetyl-xylogalactan was investigated through real-time quantitative polymerase chain reaction, and the results demonstrated that S. suieae acetyl-xylogalactan induced IL-1β and Malt-1 expression. RNA sequencing analysis results indicated the S. suieae acetyl-xylogalactan positively regulated cytokine production and secretion, protein secretion, and response to IL-1 activation, based on the observed GO terms. The predicted target genes in the GO enrichment analysis were found to upregulate NF-κB signalling and M0 to M1 macrophage conversion through the observed cytokine production. Thus, acetyl-xylogalactan can positively regulate RAW 264.7 macrophage polarisation.
Collapse
Affiliation(s)
- Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Kuan-Chu Chen
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
24
|
Kaur IP, Deol PK. Therapeutic Potential and Drug Delivery Applications of Algal Polysaccharides. Curr Pharm Des 2019; 25:1145-1146. [PMID: 31465277 DOI: 10.2174/138161282511190806114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Indu Pal Kaur
- University Institute of Pharmaceutical Sciences Panjab University, Chandigarh 160014, India
| | - Parneet Kaur Deol
- Department of Pharmaceutics, G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| |
Collapse
|