1
|
Sun S, Zhang T, Liu L, Zhou H, Yin P, Wang L. Maresin1 restrains chronic inflammation and Aβ production to ameliorate Alzheimer's disease via modulating ADAM10/17 and its associated neuroprotective signal pathways: A pilot study. Arch Biochem Biophys 2024; 759:110109. [PMID: 39117070 DOI: 10.1016/j.abb.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Chronic inflammation is an important pathogenetic factor that leads to the progression of Alzheimer's disease (AD), and specialized pro-resolving lipid mediators (SPMs) play critical role in regulating inflammatory responses during AD pathogenesis. Maresin1 (MaR1) is the latest discovered SPMs, and it is found that MaR1 improves AD cognitive impairment by regulating neurotrophic pathways to protect AD synapses and reduce Aβ production, which made MaR1 as candidate agent for AD treatment. Unfortunately, the underlying mechanisms are still largely known. In this study, the AD mice and cellular models were subjected to MaR1 treatment, and we found that MaR1 reduced Aβ production to ameliorate AD-related symptoms and increased the expression levels of ADAM10/17, sAPPα and sAPPβ to exert its anti-inflammatory role. In addition, as it was determined by Western Blot analysis, we observed that MaR1 could affected the neuroprotective signal pathways. Specifically, MaR1 downregulated p57NTR and upregulated TrkA to activate the p75NTR/TrkA signal pathway, and it could increase the expression levels of p-PI3K and p-Akt, and downregulated p-mTOR to activate the PI3K/AKT/ERK/mTOR pathway. Finally, we verified the role of ADAM10/17 in regulating AD progression, and we found that silencing of ADAM10/17 inactivated the above neuroprotective signal pathways to aggravate AD pathogenesis. In conclusion, MaR1 is verified as potential therapeutic agent for AD by eliminating Aβ production, upregulating ADAM10/17, sAPPα and sAPPβ, and activating the neuroprotective p75NTR/TrkA pathway and the PI3K/AKT/ERK/mTOR pathway.
Collapse
Affiliation(s)
- Shuang Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150036, China; Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| | - Ting Zhang
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Lijuan Liu
- Department of Neurology, Aviation General Hospital, Beijing, China.
| | - Huimin Zhou
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Ping Yin
- Department of Neurology, Aviation General Hospital, Beijing, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150036, China.
| |
Collapse
|
2
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
3
|
Pelegrini LNDC, da Silva VA, Grigoli MM, Vatanabe IP, Manzine PR, Cominetti MR. Plasma ADAM10 Levels and Their Association with Alzheimer's Disease Diagnosis in Older Adults with Fewer Years of Formal Education. Dement Geriatr Cogn Disord 2024; 53:153-161. [PMID: 38583419 DOI: 10.1159/000538630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION Low educational attainment is a potential risk factor for Alzheimer's disease (AD) development. Alpha-secretase ADAM10 plays a central role in AD pathology, attenuating the formation of beta-amyloid peptides and, therefore, their aggregation into senile plaques. This study seeks to investigate ADAM10 as a blood-based biomarker in mild cognitive impairment (MCI) and AD in a diverse group of community-dwelling older adults, focusing on those with limited educational attainment. METHODS Participants were recruited from public health services. Cognition was evaluated using Mini-Mental State Examination (MMSE) and Addenbrooke's Cognitive Examination - Revised (ACE-R) batteries. Blood samples were collected to analyze plasma ADAM10 levels. A logistic regression was conducted to verify the influence of plasma ADAM10 on the AD diagnosis. RESULTS Significant differences in age, years of education, prescribed medications, and cognitive test scores were found between the MCI and AD groups. Regarding cognitive performance, both ACE-R and MMSE scores displayed significant differences between groups, with post hoc analyses highlighting these distinctions, particularly between AD and cognitively unimpaired individuals. Elevated plasma ADAM10 levels were associated with a 4.5-fold increase in the likelihood of a diagnosis of MCI and a 5.9-fold increase in the likelihood of a diagnosis of AD. These findings suggest ADAM10 levels in plasma as a valuable biomarker for assessing cognitive status in older individuals with low education attainment. CONCLUSION This study underscores the potential utility of plasma ADAM10 levels as a blood-based biomarker for cognitive status, especially in individuals with low educational backgrounds, shedding light on their relevance in AD development and diagnosis.
Collapse
Affiliation(s)
| | | | | | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil
- Pharmaceutical Sciences Faculty, University of São Paulo, São Paulo, Brazil
| | | | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil,
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland,
| |
Collapse
|
4
|
Rissman RA, Langford O, Raman R, Donohue MC, Abdel‐Latif S, Meyer MR, Wente‐Roth T, Kirmess KM, Ngolab J, Winston CN, Jimenez‐Maggiora G, Rafii MS, Sachdev P, West T, Yarasheski KE, Braunstein JB, Irizarry M, Johnson KA, Aisen PS, Sperling RA. Plasma Aβ42/Aβ40 and phospho-tau217 concentration ratios increase the accuracy of amyloid PET classification in preclinical Alzheimer's disease. Alzheimers Dement 2024; 20:1214-1224. [PMID: 37932961 PMCID: PMC10916957 DOI: 10.1002/alz.13542] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Incorporating blood-based Alzheimer's disease biomarkers such as tau and amyloid beta (Aβ) into screening algorithms may improve screening efficiency. METHODS Plasma Aβ, phosphorylated tau (p-tau)181, and p-tau217 concentration levels from AHEAD 3-45 study participants were measured using mass spectrometry. Tau concentration ratios for each proteoform were calculated to normalize for inter-individual differences. Receiver operating characteristic (ROC) curve analysis was performed for each biomarker against amyloid positivity, defined by > 20 Centiloids. Mixture of experts analysis assessed the value of including tau concentration ratios into the existing predictive algorithm for amyloid positron emission tomography status. RESULTS The area under the receiver operating curve (AUC) was 0.87 for Aβ42/Aβ40, 0.74 for phosphorylated variant p-tau181 ratio (p-tau181/np-tau181), and 0.92 for phosphorylated variant p-tau217 ratio (p-tau217/np-tau217). The Plasma Predicted Centiloid (PPC), a predictive model including p-tau217/np-tau217, Aβ42/Aβ40, age, and apolipoprotein E improved AUC to 0.95. DISCUSSION Including plasma p-tau217/np-tau217 along with Aβ42/Aβ40 in predictive algorithms may streamline screening preclinical individuals into anti-amyloid clinical trials. CLINICALTRIALS gov Identifier: NCT04468659 HIGHLIGHTS: The addition of plasma phosphorylated variant p-tau217 ratio (p-tau217/np-tau217) significantly improved plasma biomarker algorithms for identifying preclinical amyloid positron emission tomography positivity. Prediction performance at higher NAV Centiloid levels was improved with p-tau217/np-tau217. All models generated for this study are incorporated into the Plasma Predicted Centiloid (PPC) app for public use.
Collapse
Affiliation(s)
- Robert A. Rissman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Oliver Langford
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael C. Donohue
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Sara Abdel‐Latif
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | | | | - Jennifer Ngolab
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Charisse N. Winston
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Gustavo Jimenez‐Maggiora
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | - Tim West
- C2N DiagnosticsSt. LouisMissouriUSA
| | | | | | | | - Keith A. Johnson
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Reisa A. Sperling
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
5
|
Oliveira Monteiro E Pereira de Almeida MP, Valle Pedroso R, Mantellatto Grigoli M, Vicente Silva T, Manzine PR, Cominetti MR. ADAM10 as a biomarker for Alzheimer's disease: A systematic review. Rev Neurol (Paris) 2024; 180:1-11. [PMID: 37460331 DOI: 10.1016/j.neurol.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 01/04/2023] [Accepted: 04/18/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Studies have shown that A Disintegrin and Metalloproteinase 10 (ADAM10) is the main α-secretase in the non-amyloidogenic cleavage of the amyloid precursor protein (APP), avoiding the production of amyloid-β peptide (Aβ), one of the pathological hallmarks of Alzheimer's disease (AD). OBJECTIVE To investigate ADAM10 from cerebrospinal fluid (CSF) and plasma/serum as a potential biomarker for AD. METHODS A systematic review was carried out in the MEDLINE/PubMed, Web of Science, Embase, and Scopus databases using the terms and Boolean operators: "Alzheimer" AND "ADAM10" AND "biomarker". Citation searching was also adopted. The inclusion criteria were original studies of ADAM10 in blood or CSF in patients with AD. The risk of bias was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The analysis methods were registered in the PROSPERO database (#CRD42021274239). RESULTS Of the 97 records screened, 17 were included. There is strong evidence for lower levels of ADAM10 in platelets of persons with AD compared to cognitively healthy participants. On the other hand, higher levels of ADAM10 were found in plasma. Regarding CSF, controversial results were found with lower and higher levels of ADAM10 in persons with AD compared to healthy older adults. The differences may be due to diverse reasons, including different sample collection and processing and different antibodies, highlighting the importance of standardizing the experiments and choosing the appropriate antibodies for ADAM10 detection. CONCLUSION Evidence shows that ADAM10 levels are altered in platelets, plasma, serum, and CSF of individuals with AD. The alteration was evident in all stages of the disease, and therefore, the protein may represent a complementary biomarker for the disease. However, more studies must be performed to establish cut-off values for ADAM10 levels to discriminate AD participants from cognitively unimpaired older adults.
Collapse
Affiliation(s)
| | - R Valle Pedroso
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - M Mantellatto Grigoli
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - T Vicente Silva
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - P R Manzine
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - M R Cominetti
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil; Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Dublin, Ireland.
| |
Collapse
|
6
|
Guo Y, Liang R, Ren J, Cheng L, Wang M, Chai H, Cheng X, Yang Y, Sun Y, Li J, Zhao S, Hou W, Zhang J, Liu F, Wang R, Niu Q, Yu H, Yang S, Bai J, Zhang H, Qin X, Xia N. Cognitive status and its risk factors in patients with hypertension and diabetes in a low-income rural area of China: A cross-sectional study. Int J Geriatr Psychiatry 2023; 38:e6010. [PMID: 37794769 DOI: 10.1002/gps.6010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES The proportion of older people with dementia in China is gradually increasing with the increase in the aging population over recent years. Hypertension and diabetes are common non-communicable diseases among rural populations in China. However, it remains unclear whether these conditions affect the occurrence and development of cognitive impairment as there is limited research on cognitive status and its risk factors among residents of rural areas. METHODS A multi-stage stratified cluster random sampling method was used to select 5400 participants from rural permanent residents. A self-designed structured questionnaire was used to investigate demographic data of the participants. Cognitive function was assessed using the Montreal Cognitive Function Assessment Scale (MoCA). The results were analyzed using chi-square test, ANOVA and multiple linear regression analysis. RESULTS A total of 5028 participants returned the survey, giving a response rate of 93.1%. Higher education (odds ratio (OR) = 3.2, 95% confidence interval (CI) 2.87-3.54, p < 0.001), higher income (OR = 1.61, 95% CI 1.16-2.07, p < 0.001), and dietary control (OR = 0.66, 95%CI 0.34-0.98, p < 0.001) were protective factors. A visual representation of the relationship between annual income and MoCA score showed an inverted U-curve, the group with an annual income of 6000-7999 RMB had a maximum OR of 1.93 (95%CI 0.12-2.74, p < 0.001). While difficulty in maintaining sleep were risk factors for cognitive impairment (OR = -2.28, 95% CI-4.18-0.39, p = 0.018). CONCLUSIONS Participants with middle incomes had better cognitive status than those with the highest incomes. Higher education, proper diet control and good sleep are beneficial to the cognitive status of residents in rural areas.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jingjuan Ren
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liting Cheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Jinzhong Center for Disease Control and Prevention, Health Commission of Shanxi Province, Jinzhong, China
| | - Mengqin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Huilin Chai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoyu Cheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yaowen Yang
- Health Commission Supervision & Inspection Center, Health Commission of Shanxi Province, Taiyuan, China
| | - Yajuan Sun
- Evaluation Center for Medical Service and Administration, Health Commission of Shanxi Province, Taiyuan, China
| | - Jiantao Li
- Department of Health Economics, School of Management, Shanxi Medical University, Taiyuan, China
| | - Shuhong Zhao
- Evaluation Center for Medical Service and Administration, Health Commission of Shanxi Province, Taiyuan, China
| | - Wenjing Hou
- Evaluation Center for Medical Service and Administration, Health Commission of Shanxi Province, Taiyuan, China
| | - Jianhua Zhang
- Health Commission and Sports Bureau of Yangqu County, Taiyuan, China
| | - Feng Liu
- Yangqu People's Hospital, Taiyuan, China
| | - Rong Wang
- Yangqu People's Hospital, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shoulin Yang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaojiang Qin
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Winston CN, Langford O, Levin N, Raman R, Yarasheski K, West T, Abdel-Latif S, Donohue M, Nakamura A, Toba K, Masters CL, Doecke J, Sperling RA, Aisen PS, Rissman RA. Evaluation of Blood-Based Plasma Biomarkers as Potential Markers of Amyloid Burden in Preclinical Alzheimer's Disease. J Alzheimers Dis 2023; 92:95-107. [PMID: 36710683 PMCID: PMC11191492 DOI: 10.3233/jad-221118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Participant eligibility for the A4 Study was determined by amyloid PET imaging. Given the disadvantages of amyloid PET imaging in accessibility and cost, blood-based biomarkers may serve as a sufficient biomarker and more cost-effective screening tool for patient enrollment into preclinical AD trials. OBJECTIVE To determine if a blood-based screening test can adequately identify amyloid burden in participants screened into a preclinical AD trial. METHODS In this cross-sectional study, 224 participants from the A4 Study received an amyloid PET scan (18Florbetapir) within 90 days of blood sample collection. Blood samples from all study participants were processed within 2 h after phlebotomy. Plasma amyloid measures were quantified by Shimazdu and C2 N Diagnostics using mass spectrometry-based platforms. A corresponding subset of blood samples (n = 100) was processed within 24 h after phlebotomy and analyzed by C2 N. RESULTS Plasma Aβ42/Aβ40 demonstrated the highest association for Aβ accumulation in the brain with an AUC 0.76 (95%CI = 0.69, 0.82) at C2 N and 0.80 (95%CI = 0.75, 0.86) at Shimadzu. Blood samples processed to plasma within 2 h after phlebotomy provided a better prediction of amyloid PET status than blood samples processed within 24 h (AUC 0.80 versus 0.64; p < 0.001). Age, sex, and APOE ɛ4 carrier status did not the diagnostic performance of plasma Aβ42/Aβ40 to predict amyloid PET positivity in A4 Study participants. CONCLUSION Plasma Aβ42/Aβ40 may serve as a potential biomarker for predicting elevated amyloid in the brain. Utilizing blood testing over PET imaging may improve screening efficiency into clinical trials.
Collapse
Affiliation(s)
- Charisse N. Winston
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oliver Langford
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine University of Southern California, San Diego, CA, USA
| | - Natalie Levin
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine University of Southern California, San Diego, CA, USA
| | | | - Tim West
- C2N Diagnostics, St. Louis, MO, USA
| | - Sara Abdel-Latif
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine University of Southern California, San Diego, CA, USA
| | - Michael Donohue
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine University of Southern California, San Diego, CA, USA
| | - Akinori Nakamura
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kenji Toba
- National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Colin L. Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - James Doecke
- The Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| | | | - Paul S. Aisen
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine University of Southern California, San Diego, CA, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego and VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
8
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
9
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
10
|
Guo Y, Hu Z, Wang Z. Recent Advances in the Application Peptide and Peptoid in Diagnosis Biomarkers of Alzheimer's Disease in Blood. Front Mol Neurosci 2021; 14:778955. [PMID: 35002620 PMCID: PMC8733658 DOI: 10.3389/fnmol.2021.778955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with irreversible damage of the brain and a continuous pathophysiological process. Early detection and accurate diagnosis are essential for the early intervention of AD. Precise detection of blood biomarkers related to AD could provide a shortcut to identifying early-stage patients before symptoms. In recent years, targeting peptides or peptoids have been chosen as recognition elements in nano-sensors or fluorescence detection to increase the targeting specificity, while peptide-based probes were also developed considering their specific advantages. Peptide-based sensors and probes have been developed according to different strategies, such as natural receptors, high-throughput screening, or artificial design for AD detection. This review will briefly summarize the recent developments and trends of AD diagnosis platforms based on peptide and peptoid as recognition elements and provide insights into the application of peptide and peptoid with different sources and characteristics in the diagnosis of AD biomarkers.
Collapse
Affiliation(s)
- Yuxin Guo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Shi L, Buckley NJ, Bos I, Engelborghs S, Sleegers K, Frisoni GB, Wallin A, Lléo A, Popp J, Martinez-Lage P, Legido-Quigley C, Barkhof F, Zetterberg H, Visser PJ, Bertram L, Lovestone S, Nevado-Holgado AJ. Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies. Front Aging Neurosci 2021; 13:712545. [PMID: 34366831 PMCID: PMC8335587 DOI: 10.3389/fnagi.2021.712545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurociences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Alberto Lléo
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Julius Popp
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland.,Geriatric Psychiatry, Department of Mental Health and Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | | | - Cristina Legido-Quigley
- Kings College London, London, United Kingdom.,The Systems Medicine Group, Steno Diabetes Center, Gentofte, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, London, United Kingdom
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Janssen R&D, High Wycombe, United Kingdom
| | | |
Collapse
|
12
|
Oliveira Monteiro MPA, Salheb Oliveira DSM, Manzine PR, Crispim Nascimento CM, Dos Santos Orlandi AA, de Oliveira Gomes GA, Dos Santos Orlandi F, Zazzetta MS, Pott-Junior H, Cominetti MR. ADAM10 plasma levels predict worsening in cognition of older adults: a 3-year follow-up study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:18. [PMID: 33419480 PMCID: PMC7792035 DOI: 10.1186/s13195-020-00750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Blood-based biomarkers for Alzheimer's disease (AD) are highly needed in clinic practice. So far, the gold standards for AD diagnosis are brain neuroimaging and beta-amyloid peptide, total tau, and phosphorylated tau in cerebrospinal fluid (CSF); however, they are not attractive for large-scale screening. Blood-based biomarkers allow an initial large-scale screening of patients under suspicion that could later be tested for the already established CSF biomarkers. To this regard, in this study, we evaluated whether plasma ADAM10 levels would be predictors of declines in cognition in community-dwelling older adults after a 3-year period follow-up. METHODS This was a 3-year longitudinal cohort study that included 219 community-dwelling older adults. Sociodemographic, clinical, lifestyle, depressive symptoms (GDS), and cognitive data (Mini-Mental State Examination, MMSE; Clock Drawing test, CDT) were gathered. The measurement of ADAM10 plasma levels was performed using a sandwich ELISA kit. Bivariate comparisons between groups were performed using Wilcoxon-Mann-Whitney for continuous data and Pearson's chi-square tests with Yates continuity correction for categorical data. Longitudinal analyzes of changes in the MMSE scores were performed using linear mixed-effects modeling. RESULTS Baseline MMSE scores and ADAM10 levels were significantly associated with MMSE scores on the follow-up assessment. When analyzing the interaction with time, normal MMSE scores and the ADAM10 plasma levels at baseline presented a significant and independent negative association with MMSE score values on the follow-up assessment. The analyses also showed that the predictive effect of ADAM10 plasma levels on decreasing MMSE scores on follow-up seems to be more pronounced in participants with normal MMSE, when compared with those with altered MMSE scores at baseline. CONCLUSIONS Considering that ADAM10 increase in plasma is detected as soon as in mild cognitive impairment (MCI) patients, the results presented here may support the complementary clinical use of this biomarker, in addition to the classical AD biomarkers. Taken together, these results provide the first direct evidence that changes in ADAM10 plasma levels are predictors of cognitive worsening in older adults. Moreover, this work can shed light on the study of blood biomarkers for AD and contribute to the advancement of the area.
Collapse
Affiliation(s)
- Maria Patrícia A Oliveira Monteiro
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Danielle S M Salheb Oliveira
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Patrícia R Manzine
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Carla M Crispim Nascimento
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | | | - Grace A de Oliveira Gomes
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Fabiana Dos Santos Orlandi
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Marisa S Zazzetta
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
13
|
Tang X, Liu S, Cai J, Chen Q, Xu X, Mo CB, Xu M, Mai T, Li S, He H, Qin J, Zhang Z. Effects of Gene and Plasma Tau on Cognitive Impairment in Rural Chinese Population. Curr Alzheimer Res 2021; 18:56-66. [PMID: 33761861 DOI: 10.2174/1567205018666210324122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sufficient attention was not paid to the effects of microtubule-associated protein tau (MAPT) and plasma tau protein on cognition. OBJECTIVE A total of 3072 people in rural China were recruited. They were provided with questionnaires, and blood samples were obtained. METHODS The MMSE score was used to divide the population into cognitive impairment group and control group. First, logistic regression analysis was used to explore the possible factors influencing cognitive function. Second, 1837 samples were selected for SNP detection through stratified sampling. Third, 288 samples were selected to test three plasma biomarkers (tau, phosphorylated tau, and Aβ-42). RESULTS For the MAPT rs242557, people with AG genotypes were 1.32 times more likely to develop cognitive impairment than those with AA genotypes, and people with GG genotypes were 1.47 times more likely to develop cognitive impairment than those with AG phenotypes. The plasma tau protein concentration was also increased in the population carrying G (P = 0.020). The plasma tau protein was negatively correlated with the MMSE score (P = 0.004). CONCLUSION The mutation of MAPT rs242557 (A > G) increased the risk of cognitive impairment and the concentration of plasma tau protein.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Quanhui Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Chun B Mo
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Min Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Tingyu Mai
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Shengle Li
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Haoyu He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| |
Collapse
|
14
|
Camins A, Beas-Zarate C. New Targets and Strategies of Medical Treatments in Neurological and Neurodegenerative Disorders. Curr Pharm Des 2020; 26:1233-1234. [DOI: 10.2174/138161282612200506115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|