Kumar M, Madhuprakash J, Balan V, Kumar Singh A, Vivekanand V, Pareek N. Chemoenzymatic production of chitooligosaccharides employing ionic liquids and Thermomyces lanuginosus chitinase.
BIORESOURCE TECHNOLOGY 2021;
337:125399. [PMID:
34147005 DOI:
10.1016/j.biortech.2021.125399]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study a two-step chemoenzymatic method for production of short chain chitooligosaccharides. Chitin was chemically pretreated using sulphuric acid, sodium hydroxide and two different ionic liquids, 1-Ethyl-3-methylimidazolium bromide and Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate under mild processing conditions. Pretreated chitin was further hydrolyzed employing purified chitinase from Thermomyces lanuginosus ITCC 8895. Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate treated chitin appeared amorphous and resulted in generation of 1.10 ± 0.89 mg ml-1 of (GlcNAc)2 and 1.07 ± 0.92 mg ml-1 of (GlcNAc)3. Further derivation of optimum conditions through two-factor-9 run experiments resulted in to 1.5 and 1.3 fold increments in (GlcNAc)2 and (GlcNAc)3 production, respectively. 0.1 g of both (GlcNAc)2 and (GlcNAc)3 has been purified from the Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate pretreated chitin (1 g) employing cation exchange chromatography. The present study will lay the foundation for development of a green sustainable solution for cost effective upcycling of coastal residual resources to chito-bioactives.
Collapse