1
|
Yamaguchi M, Htun KT, Tatara Y, Sato Y, Hosoda M, Kothan S, Kamimura C, Inanami O, Kashiwakura I. Radio-protective effects of ultra-fine bubble hydrogen water and serum protein responses in whole-body radiation-exposed mice. Sci Rep 2025; 15:4447. [PMID: 39910205 PMCID: PMC11799536 DOI: 10.1038/s41598-025-87963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Many studies have demonstrated hydrogen's therapeutic and preventive effects on various diseases. Its selective antioxidant properties against hydroxyl radicals, which are responsible for the indirect effects of ionizing radiation, may make it worthy of attention as a new radio-protector. We recently developed new hydrogen water that is more stable and has higher antioxidant activity by using ultra-fine bubbles. In this study, female C57BL/6J mice given ad libitum access to ultra-fine bubble hydrogen water (UBHW) were subjected to whole-body irradiation (WBI) with X-rays, and the radio-protective effect of UBHW was evaluated. WBI with 6.0 Gy (sub-lethal dose) resulted in a 30-day survival rate of 100% in UBHW-fed mice, compared with 37% in control mice. In the case of WBI with 6.5 Gy (lethal dose), while the control mice died out in about 3 weeks, the 30-day survival rate improved to 40% by UBHW due to the high scavenging activity of hydroxy radicals. Twenty-six serum proteins involved in inflammatory and immune responses were significantly identified in UBHW-fed mice by proteomics, and UBHW may enhance and regulate these functions, resulting in reduced damage in mice exposed to WBI. We conclude that UBHW has good potential in radio-protection, with evidence that warrants further research efforts in this field.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Aomori, Japan
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Youta Tatara
- Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Aomori, Japan
| | - Yoshiaki Sato
- Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, NRT Rm 4516, Los Angeles, CA, 90033, USA
| | | | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chikashi Kamimura
- Information Science Research Institute Ltd, 535-3 Mohno, Ueki-cho, Kita-ku, Kumamoto, Kumamoto, 861-0134, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Aomori, Japan.
| |
Collapse
|
2
|
Harada Y, Okamura R, Sawano J, Koide N, Miyakawa M. The Improvement of Physical Function and Caregiver Burden by a Multimodal Intervention: A Case Study of Combined Exercise Therapy, Nutritional Guidance, and Hydrogen Gas Inhalation Therapy. Cureus 2025; 17:e79516. [PMID: 40151718 PMCID: PMC11947501 DOI: 10.7759/cureus.79516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
The objective of this exploratory case study was to examine the impact of a multifaceted intervention, which incorporated exercise therapy, nutritional guidance, and hydrogen gas inhalation, on the physical function and caregiver burden of an older female patient suspected of having sarcopenia. The methods employed included a three-month program of group exercise and individualized exercise sessions, three times per week, in addition to nutritional guidance and hydrogen gas inhalation therapy. The primary outcome measures included grip strength, walking speed, inflammatory/oxidative stress markers (c-reactive protein (CRP), interleukin-6 (IL-6), 8-hydroxy-2' -deoxyguanosine (8-OHdG)), and caregiver burden, which was assessed by the Family Caregiver Burden Scale (FCS). The results demonstrated that after a period of three months, there was an improvement in grip strength and walking speed. Concurrently, there was a decrease in CRP, IL-6, and 8-OHdG levels. The FCS score demonstrated a shift from the "severe" range to the "normal" range, suggesting a reduction in caregiver burden. The findings of this case study suggest that a multidisciplinary, multifaceted intervention combining exercise therapy, nutritional support, and hydrogen gas inhalation may be effective in enhancing physical function and reducing caregiver burden in older adults with suspected sarcopenia. However, further research is necessary to clarify the independent effects of hydrogen gas inhalation.
Collapse
Affiliation(s)
- Yuusuke Harada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, JPN
- Graduate School of Medicine, Chiba University, Chiba, JPN
| | - Ryoko Okamura
- Department of Rehabilitation, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Junpei Sawano
- Department of Rehabilitation, Hokusei Hospital, Hokkaido, JPN
- Department of Rehabilitation, Sapporo Medical University, Sapporo, JPN
| | - Nao Koide
- Department of Social Welfare, Niigata University of Health and Welfare, Niigata, JPN
| | | |
Collapse
|
3
|
Sung WW, Yeh TM, Shih WL. Additive effect of clove essential oil combined with hydrogen inhalation improves psychological harm caused by lipopolysaccharide in mice. BMC Complement Med Ther 2024; 24:399. [PMID: 39548524 PMCID: PMC11566159 DOI: 10.1186/s12906-024-04682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Psychological anxiety and depression, as well as memory impairment, are frequently linked to inflammation. Clove essential oil (CEO) administration and hydrogen (H2) inhalation have been proven to have anti-inflammatory and alleviating effects on related psychological disorders in the past. The current study investigated the potential to improve anxiety-like behaviors and cognitive function by a combination of CEO and H2 treatment. METHODS The mice were administered lipopolysaccharide (LPS) to induce inflammation and oxidative stress response and cause psychological disorders. Using this animal model, we conducted experiments to test whether essential oil and H2 inhalation could improve the psychological damage in behavior caused by LPS. Subsequently, elevated plus maze (EPM), forced swimming test (FST), and passive avoidance (PA) test were performed for evaluation of mice anxiety, depression, and response to electric shock, respectively. Furthermore, the biochemical analysis was used to examine the expression levels of inflammatory and oxidative stress markers. RESULTS Our results showed that CEO administration and H2 inhalation alone or in combination positively improved inflammation-induced anxiety, depression, and cognitive memory deficits in the mice. In the single treatment groups, CEO demonstrated better results than H2 inhalation in the elevated plus maze, forced swimming, and passive avoidance tests, while combined treatment with both provided a further improved enhancement effect. Biochemical analysis of the cerebral cortex revealed that CEO and H2 therapy reversed the LPS-induced inflammation and oxidative stress response. CONCLUSIONS Our results suggest that a combination of CEO and H2 has the potential to treat psychological disorders or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei-Wen Sung
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Tsung-Ming Yeh
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| |
Collapse
|
4
|
Tamura T, Narumiya H, Homma K, Suzuki M. Combination of Hydrogen Inhalation and Hypothermic Temperature Control After Out-of-Hospital Cardiac Arrest: A Post hoc Analysis of the Efficacy of Inhaled Hydrogen on Neurologic Outcome Following Brain Ischemia During PostCardiac Arrest Care II Trial. Crit Care Med 2024; 52:1567-1576. [PMID: 39133068 PMCID: PMC11392137 DOI: 10.1097/ccm.0000000000006395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
OBJECTIVE The Efficacy of Inhaled Hydrogen on Neurologic Outcome Following Brain Ischemia During Post-Cardiac Arrest Care (HYBRID) II trial (jRCTs031180352) suggested that hydrogen inhalation may reduce post-cardiac arrest brain injury (PCABI). However, the combination of hypothermic target temperature management (TTM) and hydrogen inhalation on outcomes is unclear. The aim of this study was to investigate the combined effect of hydrogen inhalation and hypothermic TTM on outcomes after out-of-hospital cardiac arrest (OHCA). DESIGN Post hoc analysis of a multicenter, randomized, controlled trial. SETTING Fifteen Japanese ICUs. PATIENTS Cardiogenic OHCA enrolled in the HYBRID II trial. INTERVENTIONS Hydrogen mixed oxygen (hydrogen group) versus oxygen alone (control group). MEASUREMENTS AND MAIN RESULTS TTM was performed at a target temperature of 32-34°C (TTM32-TTM34) or 35-36°C (TTM35-TTM36) per the institutional protocol. The association between hydrogen + TTM32-TTM34 and 90-day good neurologic outcomes was analyzed using generalized estimating equations. The 90-day survival was compared between the hydrogen and control groups under TTM32-TTM34 and TTM35-TTM36, respectively. The analysis included 72 patients (hydrogen [ n = 39] and control [ n = 33] groups) with outcome data. TTM32-TTM34 was implemented in 25 (64%) and 24 (73%) patients in the hydrogen and control groups, respectively ( p = 0.46). Under TTM32-TTM34, 17 (68%) and 9 (38%) patients achieved good neurologic outcomes in the hydrogen and control groups, respectively (relative risk: 1.81 [95% CI, 1.05-3.66], p < 0.05). Hydrogen + TTM32-TTM34 was independently associated with good neurologic outcomes (adjusted odds ratio 16.10 [95% CI, 1.88-138.17], p = 0.01). However, hydrogen + TTM32-TTM34 did not improve survival compared with TTM32-TTM34 alone (adjusted hazard ratio: 0.22 [95% CI, 0.05-1.06], p = 0.06). CONCLUSIONS Hydrogen + TTM32-TTM34 was associated with improved neurologic outcomes after cardiogenic OHCA compared with TTM32-TTM34 monotherapy. Hydrogen inhalation is a promising treatment option for reducing PCABI when combined with TTM32-TTM34.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Minato City, Tokyo, Japan
| | - Hiromichi Narumiya
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kamigyo Ward, Kyoto, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Minato City, Tokyo, Japan
| | - Masaru Suzuki
- Department of Emergency Medicine, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| |
Collapse
|
5
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
6
|
Yang C, He Y, Ren S, Ding Y, Liu X, Li X, Sun H, Jiao D, Zhang H, Wang Y, Sun L. Hydrogen Attenuates Cognitive Impairment in Rat Models of Vascular Dementia by Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation. Adv Healthc Mater 2024; 13:e2400400. [PMID: 38769944 DOI: 10.1002/adhm.202400400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. Oxidative stress and neuroinflammation are important factors contributing to cognitive dysfunction in patients with VaD. The antioxidant and anti-inflammatory properties of hydrogen are increasingly being utilized in neurological disorders, but conventional hydrogen delivery has the disadvantage of inefficiency. Therefore, magnesium silicide nanosheets (MSNs) are used to release hydrogen in vivo in larger quantities and for longer periods of time to explore the appropriate dosage and regimen. In this study, it is observed that hydrogen improved learning and working memory in VaD rats in the Morris water maze and Y-maze, which elicits improved cognitive function. Nissl staining of neurons shows that hydrogen treatment significantly improves edema in neuronal cells. The expression and activation of reactive oxygen species (ROS), Thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-1β in the hippocampus are measured via ELISA, Western blotting, real-time qPCR, and immunofluorescence. The results show that oxidative stress indicators and inflammasome-related factors are significantly decreased after 7dMSN treatment. Therefore, it is concluded that hydrogen can ameliorate neurological damage and cognitive dysfunction in VaD rats by inhibiting ROS/NLRP3/IL-1β-related oxidative stress and inflammation.
Collapse
Affiliation(s)
- Congwen Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuxuan He
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Shuang Ren
- Department of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Yiqin Ding
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xinru Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xue Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Hao Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Dezhi Jiao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Haolin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Yingshuai Wang
- Department of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, 261053, China
| |
Collapse
|
7
|
Hayashi M, Obara H, Matsuda S, Homma K, Sasaki J, Matsubara K, Higuchi M, Sano M, Masugi Y, Kitagawa Y. Protective Effects of Hydrogen Gas Inhalation for Hindlimb Ischaemia-Reperfusion Injury in a Mouse Model. Eur J Vasc Endovasc Surg 2024; 68:120-128. [PMID: 38301869 DOI: 10.1016/j.ejvs.2024.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Ischaemia-reperfusion (I/R) injury is a severe post-operative complication that triggers an inflammatory response and causes severe damage. Hydrogen gas has anti-oxidant and anti-apoptotic properties and has been shown to be safe in humans. The study aimed to investigate whether hydrogen gas protects against skeletal muscle I/R injury. METHODS Experimental basic research using mice. A total of 160 eight to 10 week old albino laboratory bred strain of house mice (25.8 ± 0.68 g) were used in this study. The mice were cable tied to the hindlimb under anaesthesia and then placed in an anaesthesia box filled with air and 2% isoflurane (control group); 80 mice were additionally subjected to 1.3% hydrogen gas in this mix (hydrogen group). After two hours, the cable ties were removed to initiate reperfusion, and hydrogen inhalation lasted for six hours in the hydrogen group. After six hours, the mice were taken out of the box and kept in cages under standard conditions until time for observation at 16 different time points after reperfusion: zero, two, four, six, eight, and 10 hours and one, two, three, four, five, six, seven, 14, 21, and 28 days. Five mice were sacrificed using excess anaesthesia at each time point, and the bilateral hindlimb tissues were harvested. The inflammatory effects of the I/R injury were assessed by evaluating serum interleukin-6 concentrations using enzyme linked immunosorbent assay, as well as histological and immunohistochemical analyses. Untreated mice with I/R injury were used as controls. RESULTS Hydrogen gas showed protective effects associated with a reduction in inflammatory cell infiltration (neutrophils, macrophages, and lymphocytes), a reduced area of damaged muscle, maintenance of normal muscle cells, and replacement of damaged muscle cells with neoplastic myocytes. CONCLUSION Inhalation of hydrogen gas had a protective effect against hindlimb I/R injury in mice, in part by reducing inflammatory cell infiltration and in part by preserving normal muscle cells.
Collapse
Affiliation(s)
- Masanori Hayashi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan.
| | - Sachiko Matsuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Makoto Higuchi
- Ogino Memorial Laboratory, Nihon Kohden Corporation, Tokorozawa, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
8
|
Peng Z, Li XJ, Zhou Y, Zhang JT, Zhu Q, Sun JQ, Hang CH, Li W, Zhang QR, Zhuang Z. Hydrogen exerts neuroprotective effects after subarachnoid hemorrhage by attenuating neuronal ferroptosis and inhibiting neuroinflammation. Free Radic Biol Med 2024; 215:79-93. [PMID: 38447853 DOI: 10.1016/j.freeradbiomed.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Spontaneous subarachnoid hemorrhage (SAH), the third most common stroke subtype, is associated with high mortality and disability rates. Therefore, finding effective therapies to improve neurological function after SAH is critical. The objective of this study was to investigate the potential neuroprotective effects of hydrogen in the context of SAH, specifically, by examining its role in attenuating neuronal ferroptosis and inhibiting neuroinflammation, which are exacerbated by excess iron ions after SAH. METHODS Mice were exposed to chambers containing 3% hydrogen, and cells were cultured in incubators containing 60% hydrogen. Neurological function in mice was assessed using behavioral scores. Protein changes were detected using western blotting. Inflammatory factors were detected using enzyme linked immunosorbent assay. Probes, electron microscopy, and related kits were employed to detect oxidative stress and ferroptosis. RESULTS Hydrogen improved the motor function, sensory function, and cognitive ability of mice after SAH. Additionally, hydrogen facilitated Nuclear factor erythroid 2 -related factor 2 activation, upregulated Glutathione peroxidase 4, and inhibited Toll-like receptor 4, resulting in downregulation of inflammatory responses, attenuation of oxidative stress after SAH, and inhibition of neuronal ferroptosis. CONCLUSION Hydrogen exerts neuroprotective effects by inhibiting neuronal ferroptosis and attenuating neuroinflammation after SAH.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| | - Qing-Rong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Shimada M, Koyama Y, Kobayashi Y, Matsumoto Y, Kobayashi H, Shimada S. Si-based agent alleviated small bowel ischemia-reperfusion injury through antioxidant effects. Sci Rep 2024; 14:4141. [PMID: 38374376 PMCID: PMC10876940 DOI: 10.1038/s41598-024-54542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
The progression of small bowel ischemia-reperfusion (IR) injury causes cells in the intestinal tract to undergo necrosis, necessitating surgical resection, which may result in loss of intestinal function. Therefore, developing therapeutic agents that can prevent IR injury at early stages and suppress its progression is imperative. As IR injury may be closely related to oxidative stress, antioxidants can be effective therapeutic agents. Our silicon (Si)-based agent, an antioxidant, generated a large amount of hydrogen in the intestinal tract for a prolonged period after oral administration. As it has been effective for ulcerative colitis, renal failure, and IR injury during skin flap transplantation, it could be effective for small intestinal IR injury. Herein, we investigated the efficacy of an Si-based agent in a mouse model of small intestinal IR injury. The Si-based agent suppressed the apoptosis of small intestinal epithelial cells by reducing the oxidative stress induced by IR injury. In addition, the thickness of the mucosal layer in the small intestine of the Si-based agent-administered group was significantly higher than that in the untreated group, revealing that Si-based agent is effective against small intestinal IR injuries. In the future, Si-based agents may improve the success rate of small intestine transplantation.
Collapse
Affiliation(s)
- Masato Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.
| | | | - Yasunari Matsumoto
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
10
|
Kousar M, Kim YR, Kim JY, Park J. Enhancement of Growth and Secondary Metabolites by the Combined Treatment of Trace Elements and Hydrogen Water in Wheat Sprouts. Int J Mol Sci 2023; 24:16742. [PMID: 38069065 PMCID: PMC10706805 DOI: 10.3390/ijms242316742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to evaluate the response of Triticum aestivum to hydrogen water (HW) and trace elements treated with HW. A pot experiment was conducted to assess the growth indices, secondary metabolites, and antioxidant levels. The response surface methodology (RSM) approach was used to ascertain the concentrations and significant interaction between treatments. The outcomes demonstrated that the combined treatment of Se acid and Mo oxide exhibited a notable positive effect on the growth and secondary metabolites, when treated with HW as compared to distilled water (DW). Notably, the interaction between these two treatments is significant, and the higher response was observed at the optimal concentration of 0.000005% for Se acid and 0.06% for Mo oxide. Additionally, an in vitro experiment revealed that the mixture treatment inhibits the accumulation of lipids in HepG2 hepatocytes cells. Moreover, metabolic analysis revealed that upregulated metabolites are linked to the inhibition of lipid accumulation. In addition, the analysis emphasizes that the continued benefits of higher plants as a renewable supply for chemicals compounds, especially therapeutic agents, are being expanded and amplified by these state-of-the-art technologies.
Collapse
Affiliation(s)
- Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yu Rim Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Center for Functional Biomaterials, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
11
|
Liu H, Li Y, Lu C, Zhang Z, Xiang G, Yang X, Zhang Q. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming. BIORESOURCE TECHNOLOGY 2023; 386:129509. [PMID: 37473786 DOI: 10.1016/j.biortech.2023.129509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
In this paper, the plate-heat transfer type bio-methanol steam reforming reactor for hydrogen fuel cell vehicles and its operation performance was studied. The structure of the plate-heat transfer type for bio-methanol reforming has been designed and optimized with the application parameters of hydrogen production capacity, hydrogen production rate, bio-methanol conversion rate, volume limitation. Results showed the catalyst particle size has little influence when it less than 0.85 mm; However, when the catalyst loading was 20 g and the feed rate of bio-methanol solution was 1.5 mL/min, the effect of reforming bio-methanol was the best. At this time, the specific hydrogen production was 64.062 mL/gcat.min, the hydrogen production rate was 21.354 mL/s, the bio-methanol conversion rate was 82.25%. This paper can provide scientific reference for further research and development of high-efficiency and low-cost bio-methanol reforming hydrogen production equipment.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Guanning Xiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Xudong Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
12
|
Peng Z, Li XJ, Pang C, Zhang JT, Zhu Q, Sun JQ, Wang J, Cao BQ, Zhang YH, Lu Y, Li W, Hang CH, Zhuang Z. Hydrogen inhalation therapy regulates lactic acid metabolism following subarachnoid hemorrhage through the HIF-1α pathway. Biochem Biophys Res Commun 2023; 663:192-201. [PMID: 37141668 DOI: 10.1016/j.bbrc.2023.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The neuroprotective effects of hydrogen have been demonstrated, but the mechanism is still poorly understood. In a clinical trial of inhaled hydrogen in patients with subarachnoid hemorrhage (SAH), we found that hydrogen reduced the accumulation of lactic acid in the nervous system. There are no studies demonstrating the regulatory effect of hydrogen on lactate and in this study we hope to further clarify the mechanism by which hydrogen regulates lactate metabolism. In cell experiments, PCR and Western Blot showed that HIF-1α was the target related to lactic acid metabolism that changed the most before and after hydrogen intervention. HIF-1α levels were suppressed by hydrogen intervention treatment. Activation of HIF-1α inhibited the lactic acid-lowering effect of hydrogen. We have also demonstrated the lactic acid-lowering effect of hydrogen in animal studies. Our work clarifies that hydrogen can regulate lactate metabolism via the HIF-1αpathway, providing new insights into the neuroprotective mechanisms of hydrogen.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Cong Pang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China; Department of Neurosurgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Juan Wang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Bo-Qiang Cao
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yu-Hua Zhang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Zong Zhuang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
14
|
Zhu YX, You Y, Chen Z, Xu D, Yue W, Ma X, Jiang J, Wu W, Lin H, Shi J. Inorganic Nanosheet-Shielded Probiotics: A Self-Adaptable Oral Delivery System for Intestinal Disease Treatment. NANO LETTERS 2023; 23:4683-4692. [PMID: 36912868 DOI: 10.1021/acs.nanolett.3c00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The oral delivery of probiotics is commonly adopted for intestinal disease treatments in clinical settings; however, the probiotics suffer from a strong acidic attack in the gastric area and the low-efficiency intestinal colonization of naked probiotics. Coating living probiotics with synthetic materials has proven effective in enabling the adaption of bacteria to gastrointestinal environments, which, unfortunately, may shield the probiotics from initiating therapeutic responses. In this study, we report a copolymer-modified two-dimensional H-silicene nanomaterial (termed SiH@TPGS-PEI) that can facilitate probiotics to adapt to diverse gastrointestinal microenvironments on-demand. Briefly, SiH@TPGS-PEI electrostatically coated on the surface of probiotic bacteria helps to resist erosive destruction in the acidic stomach and spontaneously degrades by reacting with water to generate hydrogen, an anti-inflammatory gas in response to the neutral/weakly alkaline intestinal environment, thus exposing the probiotic bacteria for colitis amelioration. This strategy may shed new light on the development of intelligent self-adaptive materials.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenwen Yue
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Xinxin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Junjie Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Han Lin
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Tamura T, Suzuki M, Homma K, Sano M. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): a multi-centre, randomised, double-blind, placebo-controlled trial. EClinicalMedicine 2023; 58:101907. [PMID: 36969346 PMCID: PMC10030910 DOI: 10.1016/j.eclinm.2023.101907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Background Inhaled molecular hydrogen gas (H2) has been shown to improve outcomes in animal models of cardiac arrest (CA). H2 inhalation is safe and feasible in patients after CA. We investigated whether inhaled H2 would improve outcomes after out-of-hospital CA (OHCA). Methods HYBRID II is a prospective, multicentre, randomised, double-blind, placebo-controlled trial performed at 15 hospitals in Japan, between February 1, 2017, and September 30, 2021. Patients aged 20-80 years with coma following cardiogenic OHCA were randomly assigned (1:1) using blinded gas cylinders to receive supplementary oxygen with 2% H2 or oxygen (control) for 18 h. The primary outcome was the proportion of patients with a 90-day Cerebral Performance Category (CPC) of 1 or 2 assessed in a full-analysis set. Secondary outcomes included the 90-day score on a modified Rankin scale (mRS) and survival. HYBRID II was registered with the University Hospital Medical Information Network (registration number: UMIN000019820) and re-registered with the Japan Registry for Clinical Trials (registration number: jRCTs031180352). Findings The trial was terminated prematurely because of the restrictions imposed on enrolment during the COVID-19 pandemic. Between February 1, 2017, and September 30, 2021, 429 patients were screened for eligibility, of whom 73 were randomly assigned to H2 (n = 39) or control (n = 34) groups. The primary outcome, i.e., a CPC of 1 or 2 at 90 days, was achieved in 22 (56%) and 13 (39%) patients in the H2 and control groups (relative risk compared with the control group, 0.72; 95% CI, 0.46-1.13; P = 0.15), respectively. Regarding the secondary outcomes, median mRS was 1 (IQR: 0-5) and 5 (1-6) in the H2 and control groups, respectively (P = 0.01). An mRS score of 0 was achieved in 18 (46%) and 7 (21%) patients in the H2 and control groups, respectively (P = 0.03). The 90-day survival rate was 85% (33/39) and 61% (20/33) in the H2 and control groups, respectively (P = 0.02). Interpretation The increase in participants with good neurological outcomes following post-OHCA H2 inhalation in a selected population of patients was not statistically significant. However, the secondary outcomes suggest that H2 inhalation may increase 90-day survival without neurological deficits. Funding Taiyo Nippon Sanso Corporation. Translation For the Japanese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Masaru Suzuki
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
- Department of Emergency Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
- Corresponding author. Department of Emergency Medicine, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa City, Chiba 272-85, Japan.
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Motoaki Sano
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
16
|
Zhao P, Dang Z, Liu M, Guo D, Luo R, Zhang M, Xie F, Zhang X, Wang Y, Pan S, Ma X. Molecular hydrogen promotes wound healing by inducing early epidermal stem cell proliferation and extracellular matrix deposition. Inflamm Regen 2023; 43:22. [PMID: 36973725 PMCID: PMC10044764 DOI: 10.1186/s41232-023-00271-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Despite progress in developing wound care strategies, there is currently no treatment that promotes the self-tissue repair capabilities. H2 has been shown to effectively protect cells and tissues from oxidative and inflammatory damage. While comprehensive effects and how H2 functions in wound healing remains unknown, especially for the link between H2 and extracellular matrix (ECM) deposition and epidermal stem cells (EpSCs) activation. METHODS Here, we established a cutaneous aseptic wound model and applied a high concentration of H2 (66% H2) in a treatment chamber. Molecular mechanisms and the effects of healing were evaluated by gene functional enrichment analysis, digital spatial profiler analysis, blood perfusion/oxygen detection assay, in vitro tube formation assay, enzyme-linked immunosorbent assay, immunofluorescent staining, non-targeted metabonomic analysis, flow cytometry, transmission electron microscope, and live-cell imaging. RESULTS We revealed that a high concentration of H2 (66% H2) greatly increased the healing rate (3 times higher than the control group) on day 11 post-wounding. The effect was not dependent on O2 or anti-reactive oxygen species functions. Histological and cellular experiments proved the fast re-epithelialization in the H2 group. ECM components early (3 days post-wounding) deposition were found in the H2 group of the proximal wound, especially for the dermal col-I, epidermal col-III, and dermis-epidermis-junction col-XVII. H2 accelerated early autologous EpSCs proliferation (1-2 days in advance) and then differentiation into myoepithelial cells. These epidermal myoepithelial cells could further contribute to ECM deposition. Other beneficial outcomes include sustained moist healing, greater vascularization, less T-helper-1 and T-helper-17 cell-related systemic inflammation, and better tissue remodelling. CONCLUSION We have discovered a novel pattern of wound healing induced by molecular hydrogen treatment. This is the first time to reveal the direct link between H2 and ECM deposition and EpSCs activation. These H2-induced multiple advantages in healing may be related to the enhancement of cell viability in various cells and the maintenance of mitochondrial functions at a basic level in the biological processes of life.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Zheng Dang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiliu Luo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China.
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China.
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China.
| |
Collapse
|
17
|
Astapenko D, Hyspler R, Ticha A, Tomasova A, Navratil P, Zrzavecky M, Byreddy B, Sedlacek P, Radochova V, Skulec R, Hahn RG, Lehmann C, Malbrain MLNG, Cerny V. Protection of the endothelium and endothelial glycocalyx by hydrogen against ischaemia-reperfusion injury in a porcine model of cardiac arrest. Clin Hemorheol Microcirc 2023; 85:135-146. [PMID: 37694356 DOI: 10.3233/ch-231768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Hydrogen is a potent antioxidant agent that can easily be administered by inhalation. The aim of the study was to evaluate whether hydrogen protects the endothelial glycocalyx layer after successful cardiopulmonary resuscitation (CPR). METHODS Fourteen anesthetized pigs underwent CPR after induced ventricular fibrillation. During CPR and return of spontaneous circulation, 2% hydrogen gas was administered to seven pigs (hydrogen group) and seven constituted a control group. Biochemistry and sublingual microcirculation were assessed at baseline, during CPR, at the 15th, 30th, 60th, 120th minute. RESULTS All seven subjects from the hydrogen group and six subjects in the control group were successfully resuscitated after 6-10 minutes. At baseline, there were no statistically significant differences in examined variables. After the CPR, blood pH, base excess, and lactate showed significantly smaller deterioration in the hydrogen group than in the control group. By contrast, plasma syndecan-1 and the measured variables obtained via sublingual microcirculation did not change after the CPR; and were virtually identical between the two groups. CONCLUSION In pigs, hydrogen gas inhalation during CPR and post-resuscitation care was associated with less pronounced metabolic acidosis compared to controls. However, we could not find evidence of injury to the endothelium or glycocalyx in any studied groups.
Collapse
Affiliation(s)
- David Astapenko
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
- Faculty of Health Studies, Technical University in Liberec, Liberec, Czech Republic
| | - Radomir Hyspler
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Alena Ticha
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adela Tomasova
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Navratil
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
- Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marek Zrzavecky
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
| | - Bhavya Byreddy
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
| | - Petr Sedlacek
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
| | - Vera Radochova
- Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic
| | - Roman Skulec
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
- Department of Anesthesiology, Perioperative Medicine, and Intensive Care Medicine, University of J. E. Purkyne in Usti nad Labem, Masaryk Hospital in Usti nad Labem, Usti nad Labem, Czech Republic
- Institute of Postgradual Education in Healthcare, Prague, Czech Republic
- Department of Emergency Medicine, Hospital Bory, Bratislava, Slovak Republic
| | - Robert G Hahn
- Karolinska Institutet at Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- Medical Data Management, Medaman, Pas, Geel, Belgium
- International Fluid Academy, Lovenjoel, Belgium
| | - Vladimir Cerny
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague Czech Republic
- Faculty of Health Studies, Technical University in Liberec, Liberec, Czech Republic
- Department of Anesthesiology, Perioperative Medicine, and Intensive Care Medicine, University of J. E. Purkyne in Usti nad Labem, Masaryk Hospital in Usti nad Labem, Usti nad Labem, Czech Republic
- Institute of Postgradual Education in Healthcare, Prague, Czech Republic
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesiology, Perioperative Medicine and Intensive Care, Hospital Bory, Bratislava, Slovak Republic
- Department of Anesthesiology and Resuscitation, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Constantine the Philosopher University in Nitra, Faculty of Social Sciences and Health Care, Nitra, Slovak Republic
| |
Collapse
|
18
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
19
|
Neutrophils and Neutrophil Extracellular Traps in Cardiovascular Disease: An Overview and Potential Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10081850. [PMID: 36009397 PMCID: PMC9405087 DOI: 10.3390/biomedicines10081850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in pharmacotherapy have markedly improved the prognosis of cardiovascular disease (CVD) but have not completely conquered it. Therapies targeting the NOD-like receptor family pyrin domain containing 3 inflammasome and its downstream cytokines have proven effective in the secondary prevention of cardiovascular events, suggesting that inflammation is a target for treating residual risk in CVD. Neutrophil-induced inflammation has long been recognized as important in the pathogenesis of CVD. Circadian rhythm-related and disease-specific microenvironment changes give rise to neutrophil diversity. Neutrophils are primed by various stimuli, such as chemokines, cytokines, and damage-related molecular patterns, and the activated neutrophils contribute to the inflammatory response in CVD through degranulation, phagocytosis, reactive oxygen species generation, and the release of neutrophil extracellular traps (NETs). In particular, NETs promote immunothrombosis through the interaction with vascular endothelial cells and platelets and are implicated in the development of various types of CVD, such as acute coronary syndrome, deep vein thrombosis, and heart failure. NETs are promising candidates for anti-inflammatory therapy in CVD, and their efficacy has already been demonstrated in various animal models of the disease; however, they have yet to be clinically applied in humans. This narrative review discusses the diversity and complexity of neutrophils in the trajectory of CVD, the therapeutic potential of targeting NETs, and the related clinical issues.
Collapse
|
20
|
Molecular Hydrogen Neuroprotection in Post-Ischemic Neurodegeneration in the Form of Alzheimer's Disease Proteinopathy: Underlying Mechanisms and Potential for Clinical Implementation-Fantasy or Reality? Int J Mol Sci 2022; 23:ijms23126591. [PMID: 35743035 PMCID: PMC9224395 DOI: 10.3390/ijms23126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, there is a lot of public interest in naturally occurring substances with medicinal properties that are minimally toxic, readily available and have an impact on health. Over the past decade, molecular hydrogen has gained the attention of both preclinical and clinical researchers. The death of pyramidal neurons in especially the CA1 area of the hippocampus, increased permeability of the blood-brain barrier, neuroinflammation, amyloid accumulation, tau protein dysfunction, brain atrophy, cognitive deficits and dementia are considered an integral part of the phenomena occurring during brain neurodegeneration after ischemia. This review focuses on assessing the current state of knowledge about the neuroprotective effects of molecular hydrogen following ischemic brain injury. Recent studies in animal models of focal or global cerebral ischemia and cerebral ischemia in humans suggest that hydrogen has pleiotropic neuroprotective properties. One potential mechanism explaining some of the general health benefits of using hydrogen is that it may prevent aging-related changes in cellular proteins such as amyloid and tau protein. We also present evidence that, following ischemia, hydrogen improves cognitive and neurological deficits and prevents or delays the onset of neurodegenerative changes in the brain. The available evidence suggests that molecular hydrogen has neuroprotective properties and may be a new therapeutic agent in the treatment of neurodegenerative diseases such as neurodegeneration following cerebral ischemia with progressive dementia. We also present the experimental and clinical evidence for the efficacy and safety of hydrogen use after cerebral ischemia. The therapeutic benefits of gas therapy open up new promising directions in breaking the translational barrier in the treatment of ischemic stroke.
Collapse
|
21
|
The role of hydrogen water in delaying ripening of banana fruit during postharvest storage. Food Chem 2022; 373:131590. [PMID: 34802805 DOI: 10.1016/j.foodchem.2021.131590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Experiments were conducted to identify the role of hydrogen water (HW) in banana fruit ripening. Banana fruit soaked with 0.8 ppm HW showed longer ripening than control fruit. HW treatment significantly reduced ethylene production and respiratory rate, and inhibited the expressions of ethylene synthesis- and signaling-related genes. Similarly, HW treatment inhibited the down-regulation of chlorophylls binding proteins and delayed the increase of chromaticity a*, b* and L* in banana peel. Furthermore, HW-treated peel exhibited lower expressions of cell wall degradation-related genes and higher levels of fruit firmness, pectin, hemicellulose and lignin. In addition, HW-treated pulp exhibited higher levels of starch, lower level of total soluble solids (TSS) and lower expression of flavor-related genes. Microstructural observation further confirmed that HW treatment delayed the degradations of starch and cell walls. Those results indicated that HW treatment delayed banana ripening via the role of ethylene in relation to degreening, flavor and softening.
Collapse
|
22
|
Satoh T, Trudler D, Oh CK, Lipton SA. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants (Basel) 2022; 11:124. [PMID: 35052628 PMCID: PMC8772720 DOI: 10.3390/antiox11010124] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rosemary (Rosmarinus officinalis [family Lamiaceae]), an herb of economic and gustatory repute, is employed in traditional medicines in many countries. Rosemary contains carnosic acid (CA) and carnosol (CS), abietane-type phenolic diterpenes, which account for most of its biological and pharmacological actions, although claims have also been made for contributions of another constituent, rosmarinic acid. This review focuses on the potential applications of CA and CS for Alzheimer's disease (AD), Parkinson's disease (PD), and coronavirus disease 2019 (COVID-19), in part via inhibition of the NLRP3 inflammasome. CA exerts antioxidant, anti-inflammatory, and neuroprotective effects via phase 2 enzyme induction initiated by activation of the KEAP1/NRF2 transcriptional pathway, which in turn attenuates NLRP3 activation. In addition, we propose that CA-related compounds may serve as therapeutics against the brain-related after-effects of SARS-CoV-2 infection, termed "long-COVID." One factor that contributes to COVID-19 is cytokine storm emanating from macrophages as a result of unregulated inflammation in and around lung epithelial and endovascular cells. Additionally, neurological aftereffects such as anxiety and "brain fog" are becoming a major issue for both the pandemic and post-pandemic period. Many reports hold that unregulated NLRP3 inflammasome activation may potentially contribute to the severity of COVID-19 and its aftermath. It is therefore possible that suppression of NLRP3 inflammasome activity may prove efficacious against both acute lung disease and chronic neurological after-effects. Because CA has been shown to not only act systemically but also to penetrate the blood-brain barrier and reach the brain parenchyma to exert neuroprotective effects, we discuss the evidence that CA or rosemary extracts containing CA may represent an effective countermeasure against both acute and chronic pathological events initiated by SARS-CoV-2 infection as well as other chronic neurodegenerative diseases including AD and PD.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan
| | - Dorit Trudler
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
| | - Chang-Ki Oh
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
| | - Stuart A. Lipton
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Ren X, Wang Y, Jia L, Guo X, He X, Zhao Z, Gao D, Yang Z. Intelligent Nanomedicine Approaches Using Medical Gas-Mediated Multi-Therapeutic Modalities Against Cancer. J Biomed Nanotechnol 2022; 18:24-49. [PMID: 35180898 DOI: 10.1166/jbn.2022.3224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emerging area of gas-mediated cancer treatment has received widespread attention in the medical community. Featuring unique physical, chemical, and biological properties, nanomaterials can facilitate the delivery and controllable release of medicinal gases at tumor sites, and also serve as ideal platforms for the integration of other therapeutic modalities with gas therapy to augment cancer therapeutic efficacy. This review presents an overview of anti-cancer mechanisms of several therapeutic gases: nitric oxide (NO), hydrogen sulfide (H₂S), carbon monoxide (CO), oxygen (O₂), and hydrogen (H₂). Controlled release behaviors of gases under different endogenous and exogenous stimuli are also briefly discussed, followed by their synergistic effects with different therapeutic modes. Moreover, the potential challenges and future prospects regarding gas therapy based on nanomaterials are also described, aiming to facilitate the advancement of gas therapeutic nanomedicine in new frontiers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhipeng Zhao
- School of Physical Education, Xizang Minzu University, Xianyang, 712000, Shaanxi, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
24
|
Ohta S. Development of Hydrogen Medicine and Biology: Potential for Various Applications in Diverse Fields. Curr Pharm Des 2021; 27:583-584. [PMID: 33726639 DOI: 10.2174/138161282705210211144515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shigeo Ohta
- Department of Neurology Medicine, Juntendo University Graduate School of Medicine, and Institute for Advanced Medicine, Nippon Medical University, Japan
| |
Collapse
|