1
|
Zhang L, Gu L, Wu LZ, Zhao XH, Wang X, Chen Y. Self-management perceptions and experiences of patients with hard-to-heal wounds: a qualitative study. J Wound Care 2025; 34:294-302. [PMID: 40227925 DOI: 10.12968/jowc.2021.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
OBJECTIVE This study explored the perceptions, psychological changes and needs for home self-management in people with hard-to-heal wounds. METHOD Participants were recruited from a wound care outpatient clinic of The First Affiliated Hospital of Soochow University, China, and qualitative, semi-structured interviews were conducted. A phenomenological approach of qualitative research was used, and the data were collected and analysed using Colaizzi's method. RESULTS The research cohort comprised 15 patients and three themes were extracted: (1) symptom management burden (symptom distress and lack of knowledge about wound care); (2) inadequate resources related to self-management (insufficient medical resources in primary hospitals, tortuosity of the treatment-seeking process, expectation of access to wound expertise); and (3) self-managing pressures coexisting with motivation (high expectations for and low level of attention to wound healing, varied treatment adherence, financial burden, negative emotions, the contradiction between work and rest, and social communication impact). CONCLUSION There was variation in the perception of self-management among patients with hard-to-heal wounds, with only some patients knowing how to perform wound self-management at home. Overall, patients with hard-to-heal wounds had poor perceptions of self-management. Healthcare workers should encourage and guide patients with hard-to-heal wounds to self-manage, which will help to increase the patient's motivation for self-management and reduce the burden of symptom management. Professional staff in community and secondary hospitals should be trained to improve their guidance skills for self-management for patients with hard-to-heal wounds.
Collapse
Affiliation(s)
- Lu Zhang
- MS, RN, Clinical Nurse, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lan Gu
- BS, RN, Enterostomal Therapist, Outpatient Department of Wound, Ostomy and Incontinence, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin-Zhu Wu
- BS, RN, Clinical Nurse, Outpatient Department of Wound, Ostomy and Incontinence, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue-Hua Zhao
- BS, RN, Clinical Nurse, Outpatient Department of Wound, Ostomy and Incontinence, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xun Wang
- BS, RN, Head Nurse, Outpatient Department of Wound, Ostomy and Incontinence, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi Chen
- MD, RN, Enterostomal Therapist, School of Nursing, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Shakiba M, Pourmadadi M, Hosseini SM, Bigham A, Rahmani E, Sheikhi M, Pahnavar Z, Foroozandeh A, Tajiki A, Jouybar S, Abdouss M. A bi-functional nanofibrous composite membrane for wound healing applications. Arch Pharm (Weinheim) 2024; 357:e2400001. [PMID: 38747690 DOI: 10.1002/ardp.202400001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyede M Hosseini
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Cao Y, Sun J, Qin S, Zhou Z, Xu Y, Liu C. Advances and Challenges in Immune-Modulatory Biomaterials for Wound Healing Applications. Pharmaceutics 2024; 16:990. [PMID: 39204335 PMCID: PMC11360739 DOI: 10.3390/pharmaceutics16080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Wound healing progresses through three distinct stages: inflammation, proliferation, and remodeling. Immune regulation is a central component throughout, crucial for orchestrating inflammatory responses, facilitating tissue repair, and restraining scar tissue formation. Elements such as mitochondria, reactive oxygen species (ROS), macrophages, autophagy, ferroptosis, and cytokines collaboratively shape immune regulation in this healing process. Skin wound dressings, recognized for their ability to augment biomaterials' immunomodulatory characteristics via antimicrobial, antioxidative, pro- or anti-inflammatory, and tissue-regenerative capacities, have garnered heightened attention. Notwithstanding, a lack of comprehensive research addressing how these dressings attain immunomodulatory properties and the mechanisms thereof persists. Hence, this paper pioneers a systematic review of biomaterials, emphasizing immune regulation and their underlying immunological mechanisms. It begins by highlighting the importance of immune regulation in wound healing and the peculiarities and obstacles faced in skin injury recovery. This segment explores the impact of wound metabolism, infections, systemic illnesses, and local immobilization on the immune response during healing. Subsequently, the review examines a spectrum of biomaterials utilized in skin wound therapy, including hydrogels, aerogels, electrospun nanofiber membranes, collagen scaffolds, microneedles, sponges, and 3D-printed constructs. It elaborates on the immunomodulatory approaches employed by these materials, focusing on mitochondrial and ROS modulation, autophagic processes, ferroptosis, macrophage modulation, and the influence of cytokines on wound healing. Acknowledging the challenge of antibiotic resistance, the paper also summarizes promising plant-based alternatives for biomaterial integration, including curcumin. In its concluding sections, the review charts recent advancements and prospects in biomaterials that accelerate skin wound healing via immune modulation. This includes exploring mitochondrial transplantation materials, biomaterial morphology optimization, metal ion incorporation, electrostimulation-enabled immune response control, and the benefits of composite materials in immune-regulatory wound dressings. The ultimate objective is to establish a theoretical foundation and guide future investigations in the realm of skin wound healing and related materials science disciplines.
Collapse
Affiliation(s)
- Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Shengao Qin
- Beijing Laboratory of Oral Health, Capital Medical University, 10 Xitoutiao, Beijing 100054, China;
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| |
Collapse
|
4
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
5
|
Foroozandeh A, Shakiba M, Zamani A, Tajiki A, Sheikhi M, Pourmadadi M, Pahnavar Z, Rahmani E, Aghababaei N, Amoli HS, Abdouss M. Electrospun nylon 6/hyaluronic acid/chitosan bioactive nanofibrous composite as a potential antibacterial wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35370. [PMID: 38247254 DOI: 10.1002/jbm.b.35370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.
Collapse
Affiliation(s)
- Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | | | - Amirhosein Zamani
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | | | | | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Chen S, Li Y, Yan E, Lu H, Gao J, Wang Y. A novel polyhydroxyalkanoate/polyvinyl alcohol composite porous membrane via electrospinning and spin coating as potential application for chemotherapy and tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3154-3163. [DOI: 10.1002/pat.6133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 01/06/2025]
Abstract
AbstractPolyhydroxyalkanoate/polyvinyl alcohol (PHA/PVA) composite porous membranes were successfully prepared by coupling of electrospinning and spin‐coating. The resulting composite membranes were characterized by scanning electron microscope (SEM), FT‐IR spectrometer, x‐ray diffraction (XRD), contact angle tester and Brunner–Emmet–Teller (BET). It indicated that the PHA/PVA membrane belonged to a mesoporous material, which can be used as a drug delivery carrier for doxorubicin hydrochloride (DOX). In vitro drug release experiments showed that DOX loaded PHA/PVA composite membranes presented higher DOX release level in acidic environment than that in neutral environment since the degradation rate of the membranes under pH = 4 was significantly higher. And that, the DOX loaded membranes exhibited excellent performance for inhibiting the growth of Caco‐2 cells, which revealed the membranes' biomedical potential for chemotherapy of colon cancer. Meanwhile, in view of the good adhesion of the cells to the membranes, this novel mesoporous material was also perspective in tissue engineering.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Yuxin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Eryun Yan
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Hong Lu
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Jianwei Gao
- College of Food and Biological Engineering Qiqihar University Qiqihar People's Republic of China
| | - Yan Wang
- College of Food and Biological Engineering Qiqihar University Qiqihar People's Republic of China
| |
Collapse
|
7
|
Purcăreanu B, Ene MD, Moroșan A, Mihaiescu DE, Florea MA, Ghica A, Nita RA, Drumea V, Grigoroscuta MA, Kuncser A, Badica P, Olariu L. Mesoporous Composite Bioactive Compound Delivery System for Wound-Healing Processes. Pharmaceutics 2023; 15:2258. [PMID: 37765227 PMCID: PMC10534662 DOI: 10.3390/pharmaceutics15092258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the treatment of wounds is still a challenge for healthcare professionals due to high complication incidences and social impacts, and the development of biocompatible and efficient medicines remains a goal. In this regard, mesoporous materials loaded with bioactive compounds from natural extracts have a high potential for wound treatment due to their nontoxicity, high loading capacity and slow drug release. MCM-41-type mesoporous material was synthesized by using sodium trisilicate as a silica source at room temperature and normal pressure. The synthesized mesoporous silica was characterized by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), N2 absorption-desorption (BET), Dynamic Light Scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR), revealing a high surface area (BET, 1244 m2/g); pore diameter of approx. 2 nm; and a homogenous, ordered and hexagonal geometry (TEM images). Qualitative monitoring of the desorption degree of the Salvia officinalis (SO) extract, rich in ursolic acid and oleanolic acid, and Calendula officinalis (CO) extract, rich in polyphenols and flavones, was performed via the continuous recording of the UV-VIS spectra at predetermined intervals. The active ingredients in the new composite MCM-41/sage and marigold (MCM-41/SO&CO) were quantified by using HPLC-DAD and LC-MS-MS techniques. The evaluation of the biological composites' activity on the wound site was performed on two cell lines, HS27 and HaCaT, naturally involved in tissue-regeneration processes. The experimental results revealed the ability to stimulate collagen biosynthesis, the enzymatic activity of the main metalloproteinases (MMP-2 and MMP-9) involved in tissue remodeling processes and the migration rate in the wound site, thus providing insights into the re-epithelializing properties of mesoporous composites.
Collapse
Affiliation(s)
- Bogdan Purcăreanu
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Manuela Diana Ene
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Alina Moroșan
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Mihai Alexandru Florea
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Adelina Ghica
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Roxana Andreea Nita
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Veronica Drumea
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Mihai Alexandru Grigoroscuta
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania; (M.A.G.); (A.K.); (P.B.)
| | - Andrei Kuncser
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania; (M.A.G.); (A.K.); (P.B.)
| | - Petre Badica
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania; (M.A.G.); (A.K.); (P.B.)
| | - Laura Olariu
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
- Academy of Romanian Scientists, 3 Ilfov Street, 030167, Bucharest, Romania
| |
Collapse
|
8
|
Shakiba M, Sheikhi M, Pahnavar Z, Tajiki A, Bigham A, Foroozandeh A, Darvishan S, Pourmadadi M, Emadi H, Rezatabar J, Abdouss H, Abdouss M. Development of an antibacterial and antioxidative nanofibrous membrane using curcumin-loaded halloysite nanotubes for smart wound healing: In vitro and in vivo studies. Int J Pharm 2023; 642:123207. [PMID: 37419431 DOI: 10.1016/j.ijpharm.2023.123207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications. The physicochemical properties of this platform were investigated through Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. Moreover, wettability, tensile strength, swelling, and in vitro degradation were assessed. The HNT@Cur was incorporated in the fibers in three concentrations and 1 wt% was found as the optimum concentration yielding desirable structural and mechanical properties. The loading efficiency of Cur on HNT was calculated to be 43 ± 1.8%, and the release profiles and kinetics of nanocomposite were investigated at physiological and acidic pH. In vitro antibacterial and antioxidation studies showed that the PA6/HA/HNT@Cur mat had strong antibacterial and antioxidation activities against gram-positive and -negative pathogens and reactive oxygen species, respectively. Desirable cell compatibility of the mat was found through MTT assay against L292 cells up to 72 h. Finally, the efficacy of the designed wound dressing was evaluated in vivo; after 14 days, the results indicated that the wound size treated with the nanocomposite mat significantly decreased compared to the control sample. This study proposed a swift and straightforward method for developing materials that might be utilized as wound dressings in clinical settings.
Collapse
Affiliation(s)
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zohreh Pahnavar
- Department of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Sepehr Darvishan
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Emadi
- Department of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Javad Rezatabar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Abdouss
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
9
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
10
|
Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering College of Design and Engineering Singapore Singapore
| | - Mina Niazi
- Department of Biomedical Engineering National University of Singapore Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering College of Design and Engineering Singapore Singapore
| |
Collapse
|
11
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
12
|
Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahsa Akbari Kenari
- Department of Chemical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | | | - Javad Deylami
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
13
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
14
|
Ghomi ER, Khosravi F, Neisiany RE, Shakiba M, Zare M, Lakshminarayanan R, Chellappan V, Abdouss M, Ramakrishna S. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Qiao R. Functional Polymeric Nanoparticles for Drug Delivery. Curr Pharm Des 2022; 28:339. [DOI: 10.2174/138161282805220111142951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland, QLD 4072, Australia
| |
Collapse
|