1
|
Xu J, Wan K, Wu J, Wu Y, Yan W, Zhang L, Chen Y, Wei Y. Unveiling the Curvature Effect on the Activity of MoSe 2 for Piezo-Photocatalytic C-N Coupling of Benzylamine. Inorg Chem 2025; 64:6919-6926. [PMID: 40159639 DOI: 10.1021/acs.inorgchem.4c05372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During the piezoelectric photocatalytic process, the surface curvature of the piezoelectric photocatalyst undergoes dynamic changes under the influence of external mechanical forces. However, the correlation between the surface curvature and catalytic performance remains largely unexplored. Here, we demonstrate that decreasing the radius of curvature of MoSe2 significantly enhances its piezoelectric-photocatalytic activity for C-N coupling reactions, enabling imine synthesis from benzylamine. Comprehensive characterization and DFT calculations together show that the piezoelectric effect in the curved MoSe2 structure inhibits photogenerated charge carriers from recombination, improving carrier utilization efficiency. Additionally, the surface curvature effect induced by ultrasonic driving reduces the band gap. It promotes the effective transfer of electrons from Mo atoms in MoSe2 to -NH2 in benzylamine, thereby facilitating the activation of the benzylamine molecule. As a result, the synergistic effects of the piezoelectric and curvature characteristics significantly enhance the photocatalytic performance of MoSe2 toward the C-N coupling of benzylamine. This study not only provides new insights into interfacial reaction mechanisms in piezoelectric photocatalysis but also offers a novel perspective for designing high-performance catalytic systems.
Collapse
Affiliation(s)
- Jing Xu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Kangle Wan
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Jianjie Wu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yunchao Wu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Wei Yan
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Lichuan Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yuanping Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yingcong Wei
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
2
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Lukoyanov AA, Aksenova SA, Tabolin AA, Sukhorukov AY. 3-Halo-5,6-dihydro-4 H-1,2-oxazine N-oxides as synthetic equivalents of unsaturated nitrile oxides in the [3 + 2]-cycloaddition with arynes: synthesis of substituted 3-vinyl-1,2-benzisoxazoles. Org Biomol Chem 2024; 22:3615-3621. [PMID: 38634451 DOI: 10.1039/d4ob00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The reaction of 3-halo-5,6-dihydro-4H-1,2-oxazine N-oxides with arynes was studied. Arynes were generated from o-silylaryl triflates and underwent consecutive [3 + 2]-cycloaddition/[4 + 2]-cycloreversion with N-oxides leading to substituted 3-vinyl-benzisoxazoles in high yields. In the presented sequence, 1,2-oxazine N-oxides act as surrogates of rarely employed unsaturated nitrile oxides. A broad substrate scope was demonstrated. The influence of the substitution pattern of an aryne on the reaction outcome was determined. In the presence of bulky substituents, polycyclic 4,4a-dihydro-3H-benzofuro[3,2-c][1,2]oxazines were selectively formed. Mechanistic schemes for the observed reaction pathways were proposed. The synthetic utility of the products was demonstrated by their follow-up modifications.
Collapse
Affiliation(s)
- Alexander A Lukoyanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| | - Svetlana A Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119334, Russian Federation
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| |
Collapse
|
4
|
Zong ZM, Zhang L, Li GP, Wang W, Zhao XJ, He Y. Electrochemical-Induced C-N Bond Formation: A New Method to Synthesis ( Z)-Quinazolinone Oximes Using Primary Amines and Quinazolin-4(3 H)-one. Org Lett 2024; 26:1271-1276. [PMID: 38323795 DOI: 10.1021/acs.orglett.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A novel and highly selective electrochemical method for the synthesis of diverse quinazolinone oximes via direct electrooxidation of primary amines/C(sp2)-H functionalization of oximes has been developed. The reaction is conducted in an undivided cell under constant current conditions and is oxidant-free, open-air, and eco-friendly. Notably, the protocol shows good functional group tolerance, providing versatile quinazolinone oximes in good yields. Moreover, the mechanism is investigated through control experiments and cyclic voltammogram (CV) experiments.
Collapse
Affiliation(s)
- Zhi-Min Zong
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Lizhu Zhang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Gan-Peng Li
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Wei Wang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
5
|
Alam MA. Pyrazole: an emerging privileged scaffold in drug discovery. Future Med Chem 2023; 15:2011-2023. [PMID: 37933613 PMCID: PMC10652296 DOI: 10.4155/fmc-2023-0207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Pyrazole or 1H-pyrazole, a five-membered 1,2-diazole, is found in several approved drugs and some bioactive natural products. A myriad number of derivatives of this small molecule have been reported in clinical and preclinical studies for the potential treatment of several diseases. The number of drugs containing a pyrazole nucleus has increased significantly in the last 10 years. Some of the best-selling drugs in this class are ibrutinib, ruxolitinib, axitinib, niraparib and baricitinib, and are used to treat different types of cancers; lenacapavir to treat HIV; riociguat to treat pulmonary hypertension; and sildenafil to treat erectile dysfunction. Several aniline-derived pyrazole compounds have been reported as potent antibacterial agents with selective activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Here, we discuss the pyrazole-derived drugs reported up to September 2023.
Collapse
Affiliation(s)
- Mohammad Abrar Alam
- Department of Chemistry & Physics, College of Sciences & Mathematics, Arkansas State University Jonesboro, Jonesboro, AR 72467, USA
| |
Collapse
|
6
|
Banerjee M, Panjikar PC, Das D, Iyer S, Bhosle AA, Chatterjee A. Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
He H, Duan D, Li H, Wei Y, Nie L, Tang B, Wang H, Han X, Huang P, Peng X. Graphene oxide-catalyzed synthesis of benzothiazoles with amines and elemental sulfur via oxidative coupling strategy of amines to imines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|