1
|
Sun Z, Hou R, Li SS, Wang X, Wang L, Hu F, Guo FW. Controllable Synthesis of N- and O-Containing Heterocycles via Formal [3 + 2] and [5 + 2] Cyclizations. Org Lett 2024; 26:6-11. [PMID: 38157254 DOI: 10.1021/acs.orglett.3c03227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The controllable synthesis of spirooxindole-dihydrofurans and spirooxindole-benzazepines was developed through formal [3 + 2] and [5 + 2] cyclization reactions from 2-(2-oxoindolin-3-yl)malononitriles and ortho-aminobenzaldehydes, respectively. A variety of spirooxindole-benzazepines were facilely constructed via a furan ring-open-involved hydride transfer/cyclization process. It is noteworthy that the application of the hydride-transfer-involved [5 + 2] cyclization strategy for construction of spirobenzazepines was unprecedented. In addition, the spiro N- and O-containing heterocycles were highly functionalized by amino, amide, and cyano groups, which were conducive to late-stage functionalization.
Collapse
Affiliation(s)
- Zhipeng Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Xinyu Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
2
|
Sarma MJ, Sudarshana KA, Pabbaraja S, Mehta G. Diversified Stitching of Ynones with Oxindole-3-oxy acrylates: One-Flask Spiro-annulation Protocol toward Assorted 3 H/5 H-Spiro[furan-2,3'-indolin]-2'-ones. J Org Chem 2023; 88:12131-12140. [PMID: 37503726 DOI: 10.1021/acs.joc.3c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Spiroannulation of oxindole-3-oxy acrylates with ynones involving two overlapping, base differentiated cascades has been observed. Initial exposure of ynones and oxindole 3-oxy acrylates to K2CO3 triggered a tandem Michael-Michael cascade to deliver a pair of spiroannulated diastereomers. Further exposure to LiHMDS led to deep restructuring through a second multistep cascade involving stereoselective recreation of the C3 quaternary center to furnish 3H-spiro[furan-2,3'-indolin]-2'-ones with functional amplification and scrambling. This new scaffold can be directly accessed in a one-flask operation from ynones and oxindole-3-oxy acrylates.
Collapse
Affiliation(s)
- Manas Jyoti Sarma
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - K A Sudarshana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
3
|
Kaur S, Kaur J, Islam N, Anand A. Organocatalytic Synthesis and DFT Study of Versatile Biologically Active Scaffold of Isatylidene Malononitrile Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202203894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sukhmeet Kaur
- Department of Chemistry Khalsa College Amritsar 143001 India
| | - Jasneet Kaur
- Department of Chemistry Khalsa College Amritsar 143001 India
| | - Nasarul Islam
- Department of Chemistry Govt. Degree College Bandipora- 193502 Kashmir India
| | - Amit Anand
- Department of Chemistry Khalsa College Amritsar 143001 India
| |
Collapse
|
4
|
Xu RR, Bao X, Huo YW, Miao RG, Wen D, Dai W, Qi X, Wu XF. Palladium-Catalyzed Domino Carbopalladation/Carbonylative Cyclization: Synthesis of Heterocycles bearing Oxindoles and 3-Acylbenzofuran/3-Acylindole Moieties. Org Lett 2022; 24:6477-6482. [PMID: 36040811 DOI: 10.1021/acs.orglett.2c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and straightforward methodology for palladium-catalyzed carbopalladation-initiated domino carbonylative cyclization to construct bisheterocycles has been established. With TFBen as an efficient and convenient CO source, the protocol is capable of generating oxindole and 3-acylbenzofuran/3-acylindole moieties from the corresponding N-(o-iodoaryl)acrylamides and o-alkynylphenols/o-alkynylanilines with the formation of three C-C bonds and one C-O/C-N bond in a single one-step operation. A wide range of bisheterocycles bearing oxindoles and 3-acylbenzofurans/3-acylindoles were prepared in moderate to excellent yields with good functional group tolerance.
Collapse
Affiliation(s)
- Ren-Rui Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xuanzhang Bao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Yong-Wang Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ren-Guan Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Dan Wen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Weiqi Dai
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
5
|
Mohammadi Ziarani G, Panahande Z, Mohajer F, Goodarzi M, S. Varma R. An Overview of Recent Advances in Isatin-Based Multicomponent Reactions. CURR ORG CHEM 2022; 26:1485-1502. [DOI: 10.2174/1385272827666221103102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Abstract:
Isatin has been widely deployed in multicomponent reactions to prepare diverse heterocyclic compounds, which have garnered the attention of organic chemists considering their anti-inflammatory, anti-microbial, and antiviral activities, among others. This review discusses the applications of isatin in multicomponent reactions from 2019 to 2022. Isatin has been used as a raw material in multicomponent reactions due to its diverse biological and therapeutic activities. This overview may help stimulate the readers to exploit such convergent strategies in their synthetic endeavors.
Collapse
Affiliation(s)
| | - Zahra Panahande
- Department of Organic Chemistry, Factually of Chemistry, Alzahra University, Tehran Iran
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Factually of Chemistry, Alzahra University, Tehran Iran
| | - Mohammad Goodarzi
- Department of Organic Chemistry, Factually of Chemistry, Alzahra University, Tehran Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies
and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc,
Czech Republic
| |
Collapse
|
6
|
Wang DC, Wu PP, Du PY, Qu GR, Guo HM. Highly Diastereoselective Synthesis of Oxindoles Containing Vicinal Quaternary and Tertiary Stereocenters by a Domino Heck/Decarboxylative Alkynylation Sequence. Org Lett 2022; 24:4212-4217. [PMID: 35666666 DOI: 10.1021/acs.orglett.2c01517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed domino Heck/decarboxylative alkynylation reaction of trisubstituted alkenes or enamines is reported. For two different types of substrates, the current domino reaction employing different solvents and bases led to 3,3-disubstituted oxindoles and hydropyrimidinyl spirooxindoles containing vicinal quaternary and tertiary stereocenters in moderate to good yields, respectively. The general applicability of this method was shown by gram-scale syntheses and diverse transformations of the reaction products. The enantioselective version for this domino process was also studied.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pan-Pan Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pei-Yu Du
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Mohammadi Ziarani G, Hasani S, Mohajer F, Varma RS, Rafiee F. The Molecular Diversity of 1H-Indole-3-Carbaldehyde Derivatives and Their Role in Multicomponent Reactions. Top Curr Chem (Cham) 2022; 380:24. [PMID: 35467226 DOI: 10.1007/s41061-022-00379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
1H-Indole-3-carbaldehyde and related members of the indole family are ideal precursors for the synthesis of active molecules. 1H-Indole-3-carbaldehyde and its derivatives are essential and efficient chemical precursors for generating biologically active structures. Multicomponent reactions (MCRs) offer access to complex molecules. This review highlights the recent applications of 1H-indole-3-carbaldehyde in such inherently sustainable multicomponent reactions from the period, 2014 to 2021 and provides an overview of the field that awaits further exploitation in the assembly of pharmaceutically interesting scaffolds.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran.
| | - Samira Hasani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Fatemeh Rafiee
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| |
Collapse
|
8
|
Kheilkordi Z, Ziarani GM, Mohajer F. Application of Multi-component Reaction in the Synthesis of Heterocyclic [3.3.3]
Propellane Derivatives. CURR ORG CHEM 2022; 26:287-298. [DOI: 10.2174/1385272826666220112161201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Propellanes and derivatives have attractive properties due to their unique structure.
Therefore, [3.3.3] propellanes, containing tricyclic structures with one of the carbon-carbon
bonds common in three rings, were used in natural products, pharmaceutical compounds, and
heterocyclic compounds, which were biologically important. The various multi-component
reactions were applied in the synthesis of propellanes, which are highlighted throughout this
review.
Collapse
Affiliation(s)
- Zohreh Kheilkordi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Postcode: 1993893979, Tehran, Iran
| | - Ghodsi Mahammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Postcode: 1993893979, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Postcode: 1993893979, Tehran, Iran
| |
Collapse
|
9
|
Ziarani GM, Khademi M, Mohajer F, Yadav S, Tomar R. Recent Advances in the Application of Barbituric Acid Derivatives in Multicomponent
Reactions. CURR ORG CHEM 2022; 26:162-188. [DOI: 10.2174/1385272826666211229150318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Barbituric acid is a pyrimidine heterocyclic organic compound, which is pharmacologically
active. It is important to build structures containing various medicinal activities. This
compound attracts the scientific research community in organic synthesis. It can be used in the
synthesis of polyheterocyclic, natural, medicinal compounds, and organic sensors. Herein, the
utilization of barbituric or thiobarbituric acid in multicomponent reactions is reported from
2016-2021 in this manuscript.
Collapse
Affiliation(s)
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Sangeeta Yadav
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| |
Collapse
|
10
|
Khan T, Rajesh P, Arun D, Yaragorla S. Stereoselective sulfenylation of oxindole-derived propargyl alcohols to access sulfenylated-3-alkenyloxindoles. Org Biomol Chem 2021; 19:10201-10209. [PMID: 34792078 DOI: 10.1039/d1ob01921j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ca-catalyzed, tetrasubstituted alkenyl-sulfenylation was achieved using readily available aryl/alkyl thiols and easily prepared oxindole-derived propargyl alcohols under solvent-free conditions. The reaction proceeded with hydrogen bonding assisted regioselective α-thiolation and subsequent calcium catalyzed stereoselective alkenylation to yield E-alkenyl thioethers with high diastereoselectivity.
Collapse
Affiliation(s)
- Tabassum Khan
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | - Pallava Rajesh
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | - Doma Arun
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | | |
Collapse
|
11
|
Ziarani GM, Rad M, Mohajer F, Sehrawat H, Tomar R. Synthesis of Heterocyclic Compounds through Multicomponent Reactions Using 6-Aminouracil as Starting Reagent. CURR ORG CHEM 2021; 25:1070-1095. [DOI: 10.2174/1385272825666210303112858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
The analogs of 6-Amino uracil are essential components due to their biological
activities. The uracil is used as an important component for the synthesis of heterocyclic compounds
like pyrrolo-, pyrido-, pyrimidine-pyrimido scaffolds. Herein, the application of this
compound is reviewed as a precursor in the synthesis of many heterocyclic cores from 2016 to
2020.
Collapse
Affiliation(s)
| | - Marzieh Rad
- Department of Chemistry, Faculty of Physics and Chemistry, University of Alzahra, Tehran,Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, University of Alzahra, Tehran,Iran
| | - Hitesh Sehrawat
- Department of Chemistry, University of Delhi, Delhi-110007,India
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505,India
| |
Collapse
|