1
|
Wang X, Wang Y, Yuan T, Wang H, Zeng Z, Tian L, Cui L, Guo J, Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156062. [PMID: 39305743 DOI: 10.1016/j.phymed.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare cardiovascular disease with high morbidity and mortality rates. It is characterized by increased pulmonary arterial pressure. Current research into relevant therapeutic drugs and targets for PH, however, is insufficient still. Traditional Chinese medicine (TCM) and natural products have a long history as therapeutics for PH. Network pharmacology is an approach that integrates drug-target interactions and signaling pathways based on biomarkers information obtained from drug and disease databases. The concept of network pharmacology shows many similarities with the TCM philosophy. Network pharmacology help elucidate the mechanisms of TCM in PH. This review presents representative applications of network pharmacology in the study of the mechanisms of TCM and natural products for the treatment of PH. METHODS In this review, we used ("pulmonary hypertension" OR "pulmonary arterial hypertension" OR "chronic thromboembolic pulmonary hypertension") AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for reports from PubMed, Web of Science, and Google Scholar databases from ten years ago. The studies were screened and those chosen are summarized here. The TCM and natural products inPH and their corresponding targets and signaling pathways are described. Additionally, we discuss the application of network pharmacology in the study of TCM in PH to provide insights for future application strategies. RESULTS Network pharmacology have shown that AKT-related pathways, HIF-1 signaling pathway, MAPK signaling pathway, TGF-β-Smad pathway, cell cycle-related pathways and inflammation-related pathways are the main signaling pathways enriched in the PH targets of TCM. Reservatrol, curcumol, genistin, formononetin, wogonin, luteolin, baicalein, berberine, triptolide and tanshinone llA are active ingredients specific for PH treatment. A number of databases and tools specific for the treatment of PH are used in network pharmacology and natural product research. CONCLUSION Through the reasonable combination of molecular docking, omics technology and bioinformatics technology, the mechanism of multi-targets can be explained more comprehensively. Analyzing the complex mechanism of TCM from the clinical perspective may be a potential development trend of network pharmacology. Combination of predicted targets and traditional pharmacology improves efficiency of drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Lin J, Zhang Y, Lin S, Ding H, Liu W. Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Cordycepin against Pulmonary Arterial Hypertension in Rats. Comb Chem High Throughput Screen 2024; 27:2776-2789. [PMID: 38299286 DOI: 10.2174/0113862073267432230925112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Pulmonary Arterial Hypertension (PAH) is a fatal disease with high morbidity and mortality. Cordycepin has anti-inflammatory, antioxidant and immune enhancing effects. However, the role of Cordycepin in the treatment of PAH and its mechanism is not clear. METHODS The Cordycepin structure and PAH-related gene targets were obtained from public databases. The KEGG and GO enrichment analysis of common targets was performed in DAVID. PPI networks were also mapped using the STRING platform. AutoDock Vina, AutoDockTools, ChemBio3D and Pymol tools were selected for molecular docking of key targets. The therapeutic effects of Cordycepin on PAH were observed in Monocrotaline (MCT)-induced PAH rats and platelet-derived growth factor BB (PDGFBB)-induced rat pulmonary artery smooth muscle cells (PASMCs). The right ventricular systolic pressure (RVSP) was detected. HE staining, Western Blot, Scratch assay, EDU and TUNEL assays were used, respectively. RESULTS Through Network Pharmacology and molecular docking, the Cordycepin-PAH core genes were found to be TP53, AKT1, CASP3, BAX and BCL2L1. In MCT-induced PAH rats, the administration of Cordycepin significantly reduced RVSP, and inhibited pulmonary vascular remodeling. In PDGFBB-induced PASMCs, Cordycepin reduced the migration and proliferation of PASMCs and promoted apoptosis. After the Cordycepin treatment, the protein expressions of TP53, Cleaved CASP3 and BAX were significantly increased, while the protein expressions of p-AKT1 and BCL2L1 were significantly decreased in MCT-PAH rats and PDGFBB-induced PASMCs. CONCLUSION This study identified that TP53, AKT1, CASP3, BAX, and BCL2L1 were the potential targets of Cordycepin against PAH by ameliorating pulmonary vascular remodeling, inhibiting the abnormal proliferation and migration of PASMCs and increasing apoptosis of PASMCs. which provided a new understanding of the pharmacological mechanisms of Cordycepin in the treatment of PAH.
Collapse
Affiliation(s)
- Jiangpeng Lin
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuzhuo Zhang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuangfeng Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haiming Ding
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihua Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
3
|
Xue Z, Zhou M, Liu Y, Qin H, Li Y, Zhu Y, Yang J. A modified Fangji Huangqi decoction ameliorates pulmonary artery hypertension via phosphatidylinositide 3-kinases/protein kinase B-mediated regulation of proliferation and apoptosis of smooth muscle cells in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116544. [PMID: 37088239 DOI: 10.1016/j.jep.2023.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary artery hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology, which arouses an enhanced interest in PAH disease therapy. Modified Fangji Huangqi decoction (MFJHQ), a traditional Chinese medicine (TCM) formula, has a crucial role in the treatment of PAH. However, the pharmacological roles and mechanisms of MFJHQ on PAH remain unknown. AIM OF THE STUDY To investigate the effects and potential mechanism of MFJHQ on pulmonary vascular remodeling in PAH. MATERIAL AND METHODS Ultra-performance liquid chromatography (UPLC) was employed to quantitate the principal components in MFJHQ. Rats were treated with MFJHQ by gavage for final 2 weeks in MCT-induced PAH rats. RNA-sequencing and network pharmacology analysis were performed to explore the potential mechanism. The primary rat pulmonary artery smooth muscle cells (PASMCs) were utilized to evaluate the regulatory effect of MFJHQ in vitro. RESULTS Seven active components from MFJHQ were quantitated by UPLC. In rats with MCT-induced PAH, MFJHQ treatment significantly improved hemodynamic parameters, right ventricular hypertrophy index, lung function, and attenuated pulmonary vascular remodeling. Mechanistically, we further confirmed that MFJHQ inhibits MCT-induced phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt) pathway predicated by network pharmacology and RNA-sequencing analysis to reduce the proliferation of pulmonary arteries and promote pulmonary artery apoptosis in lung tissues. Additionally, MFJHQ hindered the proliferation and migration, and accelerated apoptosis in PDGF-BB-induced PASMCs in vitro, which can be enhanced by the presence of the PI3K inhibitor LY294002. CONCLUSIONS Our results indicated that MFJHQ inhibited MCT-induced pulmonary vascular remodeling by decreasing proliferation and migration of PASMCs and promoting PASMC apoptosis through PI3K/Akt pathway, which provides a novel treatment option for PAH with multi-targeting mechanisms inspired by TCM theory.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Qi G, Jiang K, Qu J, Zhang A, Xu Z, Li Z, Zheng X, Li Z. The Material Basis and Mechanism of Xuefu Zhuyu Decoction in Treating Stable Angina Pectoris and Unstable Angina Pectoris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3741027. [PMID: 35140797 PMCID: PMC8820872 DOI: 10.1155/2022/3741027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
METHODS Firstly, we used a network proximity approach to calculate and compare the effectiveness of the formula with that of Western drugs for each type of angina, including all targets and intersecting targets, from a topological perspective. Secondly, we compared the mechanisms of action of the two angina pectoris at three levels and five aspects, including conventional and modular analysis approaches. Thirdly, based on the unique functions of each angina in the complex heterogeneous network, we designed a reverse process for finding the material basis using dynamic, static, and enriched items as well as a total item. Finally, the designed inverse process, material basis, and mechanism of action were validated. RESULTS The target network of Xuefu Zhuyu decoction is closer to the target network of each type of angina than that of Western drugs, and the intersection targets have a closer proximity. Comparison of the mechanisms of action showed that stable angina and unstable angina had 158 common targets, while the unique targets were 34 and 1, respectively. Modularity analysis showed that the GO similarity of target modules was highly correlated with KEGG similarity. We ended up with 67 compounds upregulated for stable angina and 47 compounds upregulated for unstable angina. Our results were validated by literature mining, high-volume molecular docking, and miRNA enrichment analysis. CONCLUSIONS For both types of angina pectoris, Xuefu Zhuyu decoction is superior to Western drugs. A comparison of various aspects led to the unique mechanisms of action, from which the material basis of each type of angina was deduced.
Collapse
Affiliation(s)
- Guanpeng Qi
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaiwen Jiang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiaming Qu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Aijun Zhang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ze Xu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhaohang Li
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaosong Zheng
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Zuojing Li
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
6
|
Ameliorative Effects and Mechanism of Buyang Huanwu Decoction on Pulmonary Vascular Remodeling: Network and Experimental Analyses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4576071. [PMID: 34422208 PMCID: PMC8378953 DOI: 10.1155/2021/4576071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
Pulmonary hypertension (PH) is a severe and progressive cardiovascular disease. Its pathological mechanism is complex, and the common pathological feature is pulmonary vascular remodeling. The efficacy of existing therapeutic agents is limited. Traditional Chinese medicine (TCM) has its unique advantages in the prevention and treatment of complex diseases. In this study, the approaches of network pharmacology combined with biological verification are employed to explore the role of Buyang huanwu decoction (BYHWD) in the treatment of PH. The active ingredients in BYHWD were first screened based on the ADME properties of the compounds. In turn, the mean of data mining was utilized to analyze the potential targets of BYHWD for the treatment of PH. On this basis, a series of interaction networks were constructed for searching the core targets. The genes including AKT1, MMP9, NOS3/eNOS, and EGFR were found to be possible key targets in BYHWD. The results of enrichment analysis showed that the targets of BYHWD focused on smooth muscle cell proliferation, migration, and apoptosis, which are classic biological processes involved in pulmonary vascular remodeling and are closely related to the PI3K-Akt-eNOS pathway. The methods of biological experiments were adopted to verify the above results. The present study elucidated the mechanism of BYHWD in the treatment of PH and provided new ideas for the clinical use of TCM in the treatment of PH.
Collapse
|