1
|
Zhao C, Guo S, Ge S. Epigenetic regulation of cGAS and STING expression in cancer. Int Immunopharmacol 2024; 138:112556. [PMID: 38936059 DOI: 10.1016/j.intimp.2024.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Although cancer immunotherapy has become a successful therapeutic strategy in a certain range of solid cancer and hematological malignancies, this efficacy of immunotherapy is impeded by limited success rates due to an immunologically "cold" state. The cGAS-STING signaling pathway is an evolutionarily conserved system which can find cytoplasmic DNA to regulate the innate immune and adaptive immune response. Beyond the host defense and autoimmune disorders, recent advances have now expanded the roles of cGAS-STING that is precise activated and tight regulated to improve anticancer immunity. Mounting evidence now has shown the crucial role of epigenetic regulation in mediating the expression of key genes associated with the cGAS-STING signaling pathway. In this review, we highlight the structure and cellular localization of cGAS and STING as well as intracellular cascade reaction of cGAS-STING signal transduction. We further summarize recent findings of epigenetic regulatory mechanisms that control the expression of cGAS and STING in cancer. The review aims to offer theoretical basis and reference for targeting the epigenetic mechanisms that control cGAS and STING gene expression to promote the development of more effective combination therapeutic regimens to enhance the efficacy of cancer immunotherapy in clinical practice and cancer clinical and cancer research workers.
Collapse
Affiliation(s)
- Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Shiyao Ge
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Ma D, Yang M, Sun C, Cui X, Xiong G, Wang Q, Jing W, Chen H, Lv X, Liu S, Li T, Zhao Y, Han L. cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity. Cell Death Differ 2024; 31:722-737. [PMID: 38594443 PMCID: PMC11164996 DOI: 10.1038/s41418-024-01291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.
Collapse
Affiliation(s)
- Dapeng Ma
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Yang
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Caiyu Sun
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuling Cui
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gaozhong Xiong
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiushi Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haiqiang Chen
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoting Lv
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shili Liu
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lihui Han
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Huang X, Liang N, Zhang F, Lin W, Ma W. Lovastatin-Induced Mitochondrial Oxidative Stress Leads to the Release of mtDNA to Promote Apoptosis by Activating cGAS-STING Pathway in Human Colorectal Cancer Cells. Antioxidants (Basel) 2024; 13:679. [PMID: 38929118 PMCID: PMC11200898 DOI: 10.3390/antiox13060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors widely used in the treatment of hyperlipidemia. The inhibition of HMG-CoA reductase in the mevalonate pathway leads to the suppression of cell proliferation and induction of apoptosis. The cyclic GMP-AMP synthase (cGAS) stimulator of the interferon genes (STING) signaling pathway has been suggested to not only facilitate inflammatory responses and the production of type I interferons (IFN), but also activate other cellular processes, such as apoptosis. It has not been studied, however, whether cGAS-STING activation is involved in the apoptosis induced by statin treatment in human colorectal cancer cells. In this study, we reported that lovastatin impaired mitochondrial function, including the depolarization of mitochondrial membrane potential, reduction of oxygen consumption, mitochondrial DNA (mtDNA) integrity, and mtDNA abundance in human colorectal cancer HCT116 cells. The mitochondrial dysfunction markedly induced ROS production in mitochondria, whereas the defect in mitochondria respiration or depletion of mitochondria eliminated reactive oxygen species (ROS) production. The ROS-induced oxidative DNA damage by lovastatin treatment was attenuated by mitochondrial-targeted antioxidant mitoquinone (mitoQ). Upon DNA damage, mtDNA was released into the cytosol and bound to DNA sensor cGAS, thus activating the cGAS-STING signaling pathway to trigger a type I interferon response. This effect was not activated by nuclear DNA (nuDNA) or mitochondrial RNA, as the depletion of mitochondria compromised this effect, but not the knockdown of retinoic acid-inducible gene-1/melanoma differentiation-associated protein 5 (RIG-I/MDA5) adaptor or mitochondrial antiviral signaling protein (MAVS). Moreover, lovastatin-induced apoptosis was partly dependent on the cGAS-STING signaling pathway in HCT116 cells as the knockdown of cGAS or STING expression rescued cell viability and mitigated apoptosis. Similarly, the knockdown of cGAS or STING also attenuated the antitumor effect of lovastatin in the HCT116 xenograft model in vivo. Our findings suggest that lovastatin-induced apoptosis is at least partly mediated through the cGAS-STING signaling pathway by triggering mtDNA accumulation in the cytosol in human colorectal cancer HCT116 cells.
Collapse
Affiliation(s)
- Xiaoming Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ning Liang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
4
|
Gong Y, Ke Y, Yu Z, Pan J, Zhou X, Jiang Y, Zhou M, Zeng H, Geng X, Hu G. Identified RP2 as a prognostic biomarker for glioma, facilitating glioma pathogenesis mainly via regulating tumor immunity. Aging (Albany NY) 2023; 15:8155-8184. [PMID: 37602882 PMCID: PMC10497014 DOI: 10.18632/aging.204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Glioma is the most common primary intracranial tumor in the central nervous system, with a high degree of malignancy and poor prognosis, easy to recur, difficult to cure. The mutation of Retinitis Pigmentosa 2 (RP2) can cause retinitis pigmentosa, it is a prognostic factor of osteosarcoma, however, its role in glioma remains unclear. Based on the data from TCGA and GTEx, we identified RP2 as the most related gene for glioma by WGCNA, and used a series of bioinformatics analyses including LinkedOmics, GSCA, CTD, and so on, to explore the expression of RP2 in glioma and the biological functions it is involved in. The results showed that RP2 was highly expressed in glioma, and its overexpression could lead to poor prognosis. In addition, the results of enrichment analysis showed that RP2 was highly correlated with cell proliferation and immune response. And then, we found significant enrichment of Macrophages among immune cells. Furthermore, our experiments have confirmed that Macrophages can promote the development of glioma by secreting or influencing the secretion of some cytokines. Moreover, we investigated the influence of RP2 on the immunotherapy of glioma and the role of m6A modification in the influence of RP2 on glioma. Ultimately, we determined that RP2 is an independent prognostic factor that is mainly closely related to immune for glioma.
Collapse
Affiliation(s)
- Yiyang Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|