1
|
Shi W, Yang H, Xie L, Yin XX, Zhang Y. A review of machine learning-based methods for predicting drug-target interactions. Health Inf Sci Syst 2024; 12:30. [PMID: 38617016 PMCID: PMC11014838 DOI: 10.1007/s13755-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.
Collapse
Affiliation(s)
- Wen Shi
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Linhai Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing, 102206 China
| | - Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Yanchun Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000 China
| |
Collapse
|
2
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
3
|
Zhang Q, Zuo L, Ren Y, Wang S, Wang W, Ma L, Zhang J, Xia B. FMCA-DTI: a fragment-oriented method based on a multihead cross attention mechanism to improve drug-target interaction prediction. Bioinformatics 2024; 40:btae347. [PMID: 38810106 PMCID: PMC11256963 DOI: 10.1093/bioinformatics/btae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
MOTIVATION Identifying drug-target interactions (DTI) is crucial in drug discovery. Fragments are less complex and can accurately characterize local features, which is important in DTI prediction. Recently, deep learning (DL)-based methods predict DTI more efficiently. However, two challenges remain in existing DL-based methods: (i) some methods directly encode drugs and proteins into integers, ignoring the substructure representation; (ii) some methods learn the features of the drugs and proteins separately instead of considering their interactions. RESULTS In this article, we propose a fragment-oriented method based on a multihead cross attention mechanism for predicting DTI, named FMCA-DTI. FMCA-DTI obtains multiple types of fragments of drugs and proteins by branch chain mining and category fragment mining. Importantly, FMCA-DTI utilizes the shared-weight-based multihead cross attention mechanism to learn the complex interaction features between different fragments. Experiments on three benchmark datasets show that FMCA-DTI achieves significantly improved performance by comparing it with four state-of-the-art baselines. AVAILABILITY AND IMPLEMENTATION The code for this workflow is available at: https://github.com/jacky102022/FMCA-DTI.
Collapse
Affiliation(s)
- Qi Zhang
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Le Zuo
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Ying Ren
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Siyuan Wang
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Wenfa Wang
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Lerong Ma
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
- Medical Research and Experimental Center, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, China
| | - Bisheng Xia
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| |
Collapse
|
4
|
Cao J, Chen Q, Qiu J, Wang Y, Lan W, Du X, Tan K. NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network. J Cell Mol Med 2024; 28:e18224. [PMID: 38509739 PMCID: PMC10955156 DOI: 10.1111/jcmm.18224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Drug-target interaction (DTI) prediction is essential for new drug design and development. Constructing heterogeneous network based on diverse information about drugs, proteins and diseases provides new opportunities for DTI prediction. However, the inherent complexity, high dimensionality and noise of such a network prevent us from taking full advantage of these network characteristics. This article proposes a novel method, NGCN, to predict drug-target interactions from an integrated heterogeneous network, from which to extract relevant biological properties and association information while maintaining the topology information. It focuses on learning the topology representation of drugs and targets to improve the performance of DTI prediction. Unlike traditional methods, it focuses on learning the low-dimensional topology representation of drugs and targets via graph-based convolutional neural network. NGCN achieves substantial performance improvements over other state-of-the-art methods, such as a nearly 1.0% increase in AUPR value. Moreover, we verify the robustness of NGCN through benchmark tests, and the experimental results demonstrate it is an extensible framework capable of combining heterogeneous information for DTI prediction.
Collapse
Affiliation(s)
- Junyue Cao
- College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qingfeng Chen
- School of Computer, Electronics and InformationGuangxi UniversityNanningChina
| | - Junlai Qiu
- School of Computer, Electronics and InformationGuangxi UniversityNanningChina
| | - Yiming Wang
- School of Computer, Electronics and InformationGuangxi UniversityNanningChina
| | - Wei Lan
- School of Computer, Electronics and InformationGuangxi UniversityNanningChina
| | - Xiaojing Du
- School of Computer, Electronics and InformationGuangxi UniversityNanningChina
| | - Kai Tan
- School of Computer, Electronics and InformationGuangxi UniversityNanningChina
| |
Collapse
|
5
|
Wang W, Yu M, Sun B, Li J, Liu D, Zhang H, Wang X, Zhou Y. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:143-154. [PMID: 38051618 DOI: 10.1109/tcbb.2023.3339645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Accurately identifying potential drug-target interactions (DTIs) is a critical step in accelerating drug discovery. Despite many studies that have been conducted over the past decades, detecting DTIs remains a highly challenging and complicated process. Therefore, we propose a novel method called SMGCN, which combines multiple similarity and multiple kernel fusion based on Graph Convolutional Network (GCN) to predict DTIs. In order to capture the features of the network structure and fully explore direct or indirect relationships between nodes, we propose the method of multiple similarity, which combines similarity fusion matrices with Random Walk with Restart (RWR) and cosine similarity. Then, we use GCN to extract multi-layer low-dimensional embedding features. Unlike traditional GCN methods, we incorporate Multiple Kernel Learning (MKL). Finally, we use the Dual Laplace Regularized Least Squares method to predict novel DTIs through combinatorial kernels in drug and target spaces. We conduct experiments on a golden standard dataset, and demonstrate the effectiveness of our proposed model in predicting DTIs through showing significant improvements in Area Under the Curve (AUC) and Area Under the Precision-Recall Curve (AUPR). In addition, our model can also discover some new DTIs, which can be verified by the KEGG BRITE Database and relevant literature.
Collapse
|
6
|
Qian Y, Li X, Wu J, Zhang Q. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction. BMC Bioinformatics 2023; 24:323. [PMID: 37633938 PMCID: PMC10463755 DOI: 10.1186/s12859-023-05447-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Prediction of drug-target interaction (DTI) is an essential step for drug discovery and drug reposition. Traditional methods are mostly time-consuming and labor-intensive, and deep learning-based methods address these limitations and are applied to engineering. Most of the current deep learning methods employ representation learning of unimodal information such as SMILES sequences, molecular graphs, or molecular images of drugs. In addition, most methods focus on feature extraction from drug and target alone without fusion learning from drug-target interacting parties, which may lead to insufficient feature representation. MOTIVATION In order to capture more comprehensive drug features, we utilize both molecular image and chemical features of drugs. The image of the drug mainly has the structural information and spatial features of the drug, while the chemical information includes its functions and properties, which can complement each other, making drug representation more effective and complete. Meanwhile, to enhance the interactive feature learning of drug and target, we introduce a bidirectional multi-head attention mechanism to improve the performance of DTI. RESULTS To enhance feature learning between drugs and targets, we propose a novel model based on deep learning for DTI task called MCL-DTI which uses multimodal information of drug and learn the representation of drug-target interaction for drug-target prediction. In order to further explore a more comprehensive representation of drug features, this paper first exploits two multimodal information of drugs, molecular image and chemical text, to represent the drug. We also introduce to use bi-rectional multi-head corss attention (MCA) method to learn the interrelationships between drugs and targets. Thus, we build two decoders, which include an multi-head self attention (MSA) block and an MCA block, for cross-information learning. We use a decoder for the drug and target separately to obtain the interaction feature maps. Finally, we feed these feature maps generated by decoders into a fusion block for feature extraction and output the prediction results. CONCLUSIONS MCL-DTI achieves the best results in all the three datasets: Human, C. elegans and Davis, including the balanced datasets and an unbalanced dataset. The results on the drug-drug interaction (DDI) task show that MCL-DTI has a strong generalization capability and can be easily applied to other tasks.
Collapse
Affiliation(s)
- Ying Qian
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Xinyi Li
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Jian Wu
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Qian Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| |
Collapse
|
7
|
Zhou L, Wang Y, Peng L, Li Z, Luo X. Identifying potential drug-target interactions based on ensemble deep learning. Front Aging Neurosci 2023; 15:1176400. [PMID: 37396659 PMCID: PMC10309650 DOI: 10.3389/fnagi.2023.1176400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Drug-target interaction prediction is one important step in drug research and development. Experimental methods are time consuming and laborious. Methods In this study, we developed a novel DTI prediction method called EnGDD by combining initial feature acquisition, dimensional reduction, and DTI classification based on Gradient boosting neural network, Deep neural network, and Deep Forest. Results EnGDD was compared with seven stat-of-the-art DTI prediction methods (BLM-NII, NRLMF, WNNGIP, NEDTP, DTi2Vec, RoFDT, and MolTrans) on the nuclear receptor, GPCR, ion channel, and enzyme datasets under cross validations on drugs, targets, and drug-target pairs, respectively. EnGDD computed the best recall, accuracy, F1-score, AUC, and AUPR under the majority of conditions, demonstrating its powerful DTI identification performance. EnGDD predicted that D00182 and hsa2099, D07871 and hsa1813, DB00599 and hsa2562, D00002 and hsa10935 have a higher interaction probabilities among unknown drug-target pairs and may be potential DTIs on the four datasets, respectively. In particular, D00002 (Nadide) was identified to interact with hsa10935 (Mitochondrial peroxiredoxin3) whose up-regulation might be used to treat neurodegenerative diseases. Finally, EnGDD was used to find possible drug targets for Parkinson's disease and Alzheimer's disease after confirming its DTI identification performance. The results show that D01277, D04641, and D08969 may be applied to the treatment of Parkinson's disease through targeting hsa1813 (dopamine receptor D2) and D02173, D02558, and D03822 may be the clues of treatment for patients with Alzheimer's disease through targeting hsa5743 (prostaglandinendoperoxide synthase 2). The above prediction results need further biomedical validation. Discussion We anticipate that our proposed EnGDD model can help discover potential therapeutic clues for various diseases including neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Yuzhuang Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Xueming Luo
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
8
|
Dong W, Yang Q, Wang J, Xu L, Li X, Luo G, Gao X. Multi-modality attribute learning-based method for drug-protein interaction prediction based on deep neural network. Brief Bioinform 2023; 24:7145903. [PMID: 37114624 DOI: 10.1093/bib/bbad161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Identification of active candidate compounds for target proteins, also called drug-protein interaction (DPI) prediction, is an essential but time-consuming and expensive step, which leads to fostering the development of drug discovery. In recent years, deep network-based learning methods were frequently proposed in DPIs due to their powerful capability of feature representation. However, the performance of existing DPI methods is still limited by insufficiently labeled pharmacological data and neglected intermolecular information. Therefore, overcoming these difficulties to perfect the performance of DPIs is an urgent challenge for researchers. In this article, we designed an innovative 'multi-modality attributes' learning-based framework for DPIs with molecular transformer and graph convolutional networks, termed, multi-modality attributes (MMA)-DPI. Specifically, intermolecular sub-structural information and chemical semantic representations were extracted through an augmented transformer module from biomedical data. A tri-layer graph convolutional neural network module was applied to associate the neighbor topology information and learn the condensed dimensional features by aggregating a heterogeneous network that contains multiple biological representations of drugs, proteins, diseases and side effects. Then, the learned representations were taken as the input of a fully connected neural network module to further integrate them in molecular and topological space. Finally, the attribute representations were fused with adaptive learning weights to calculate the interaction score for the DPIs tasks. MMA-DPI was evaluated in different experimental conditions and the results demonstrate that the proposed method achieved higher performance than existing state-of-the-art frameworks.
Collapse
Affiliation(s)
- Weihe Dong
- College of information and Computer Engineering, Northeast Forestry University, Hexing Road, 150040, Harbin, China
| | - Qiang Yang
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, 150080, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, 150080, Harbin, China
| | - Jian Wang
- College of information and Computer Engineering, Northeast Forestry University, Hexing Road, 150040, Harbin, China
| | - Long Xu
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, 150080, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, 150080, Harbin, China
| | - Xiaokun Li
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, 150080, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, 150080, Harbin, China
| | - Gongning Luo
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
- School of Computer Science and Technology, Harbin Institute of Technology, West Dazhi Street, 150001, Harbin, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Muniyappan S, Rayan AXA, Varrieth GT. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9530-9571. [PMID: 37161255 DOI: 10.3934/mbe.2023419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MOTIVATION In vitro experiment-based drug-target interaction (DTI) exploration demands more human, financial and data resources. In silico approaches have been recommended for predicting DTIs to reduce time and cost. During the drug development process, one can analyze the therapeutic effect of the drug for a particular disease by identifying how the drug binds to the target for treating that disease. Hence, DTI plays a major role in drug discovery. Many computational methods have been developed for DTI prediction. However, the existing methods have limitations in terms of capturing the interactions via multiple semantics between drug and target nodes in a heterogeneous biological network (HBN). METHODS In this paper, we propose a DTiGNN framework for identifying unknown drug-target pairs. The DTiGNN first calculates the similarity between the drug and target from multiple perspectives. Then, the features of drugs and targets from each perspective are learned separately by using a novel method termed an information entropy-based random walk. Next, all of the learned features from different perspectives are integrated into a single drug and target similarity network by using a multi-view convolutional neural network. Using the integrated similarity networks, drug interactions, drug-disease associations, protein interactions and protein-disease association, the HBN is constructed. Next, a novel embedding algorithm called a meta-graph guided graph neural network is used to learn the embedding of drugs and targets. Then, a convolutional neural network is employed to infer new DTIs after balancing the sample using oversampling techniques. RESULTS The DTiGNN is applied to various datasets, and the result shows better performance in terms of the area under receiver operating characteristic curve (AUC) and area under precision-recall curve (AUPR), with scores of 0.98 and 0.99, respectively. There are 23,739 newly predicted DTI pairs in total.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Tamil Nadu, India
| | | | | |
Collapse
|
10
|
McNair D. Artificial Intelligence and Machine Learning for Lead-to-Candidate Decision-Making and Beyond. Annu Rev Pharmacol Toxicol 2023; 63:77-97. [PMID: 35679624 DOI: 10.1146/annurev-pharmtox-051921-023255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of artificial intelligence (AI) and machine learning (ML) in pharmaceutical research and development has to date focused on research: target identification; docking-, fragment-, and motif-based generation of compound libraries; modeling of synthesis feasibility; rank-ordering likely hits according to structural and chemometric similarity to compounds having known activity and affinity to the target(s); optimizing a smaller library for synthesis and high-throughput screening; and combining evidence from screening to support hit-to-lead decisions. Applying AI/ML methods to lead optimization and lead-to-candidate (L2C) decision-making has shown slower progress, especially regarding predicting absorption, distribution, metabolism, excretion, and toxicology properties. The present review surveys reasons why this is so, reports progress that has occurred in recent years, and summarizes some of the issues that remain. Effective AI/ML tools to derisk L2C and later phases of development are important to accelerate the pharmaceutical development process, ameliorate escalating development costs, and achieve greater success rates.
Collapse
Affiliation(s)
- Douglas McNair
- Global Health, Integrated Development, Bill & Melinda Gates Foundation, Seattle, Washington, USA;
| |
Collapse
|
11
|
Matrix factorization with denoising autoencoders for prediction of drug–target interactions. Mol Divers 2022:10.1007/s11030-022-10492-8. [DOI: 10.1007/s11030-022-10492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
|
12
|
Zhu S, Bai Q, Li L, Xu T. Drug repositioning in drug discovery of T2DM and repositioning potential of antidiabetic agents. Comput Struct Biotechnol J 2022; 20:2839-2847. [PMID: 35765655 PMCID: PMC9189996 DOI: 10.1016/j.csbj.2022.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Repositioning or repurposing drugs account for a substantial part of entering approval pipeline drugs, which indicates that drug repositioning has huge market potential and value. Computational technologies such as machine learning methods have accelerated the process of drug repositioning in the last few decades years. The repositioning potential of type 2 diabetes mellitus (T2DM) drugs for various diseases such as cancer, neurodegenerative diseases, and cardiovascular diseases have been widely studied. Hence, the related summary about repurposing antidiabetic drugs is of great significance. In this review, we focus on the machine learning methods for the development of new T2DM drugs and give an overview of the repurposing potential of the existing antidiabetic agents.
Collapse
Affiliation(s)
- Sha Zhu
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qifeng Bai
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
- Corresponding author.
| | | | | |
Collapse
|
13
|
Wang H, Huang F, Xiong Z, Zhang W. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions. Brief Bioinform 2022; 23:6596318. [PMID: 35641162 DOI: 10.1093/bib/bbac184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/09/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Predicting drug-target interactions (DTIs) is crucial at many phases of drug discovery and repositioning. Many computational methods based on heterogeneous networks (HNs) have proved their potential to predict DTIs by capturing extensive biological knowledge and semantic information from meta-paths. However, existing methods manually customize meta-paths, which is overly dependent on some specific expertise. Such strategy heavily limits the scalability and flexibility of these models, and even affects their predictive performance. To alleviate this limitation, we propose a novel HN-based method with attentive meta-path extraction for DTI prediction, named HampDTI, which is capable of automatically extracting useful meta-paths through a learnable attention mechanism instead of pre-definition based on domain knowledge. Specifically, by scoring multi-hop connections across various relations in the HN with each relation assigned an attention weight, HampDTI constructs a new trainable graph structure, called meta-path graph. Such meta-path graph implicitly measures the importance of every possible meta-path between drugs and targets. To enable HampDTI to extract more diverse meta-paths, we adopt a multi-channel mechanism to generate multiple meta-path graphs. Then, a graph neural network is deployed on the generated meta-path graphs to yield the multi-channel embeddings of drugs and targets. Finally, HampDTI fuses all embeddings from different channels for predicting DTIs. The meta-path graphs are optimized along with the model training such that HampDTI can adaptively extract valuable meta-paths for DTI prediction. The experiments on benchmark datasets not only show the superiority of HampDTI in DTI prediction over several baseline methods, but also, more importantly, demonstrate the effectiveness of the model discovering important meta-paths.
Collapse
Affiliation(s)
- Hongzhun Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Wuhan, China
| | - Feng Huang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Wuhan, China
| | - Zhankun Xiong
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Wuhan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Wuhan, China
| |
Collapse
|
14
|
DTIP-TC2A: An analytical framework for drug-target interactions prediction methods. Comput Biol Chem 2022; 99:107707. [DOI: 10.1016/j.compbiolchem.2022.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
|
15
|
Lin HH, Zhang QR, Kong X, Zhang L, Zhang Y, Tang Y, Xu H. Machine learning prediction of antiviral-HPV protein interactions for anti-HPV pharmacotherapy. Sci Rep 2021; 11:24367. [PMID: 34934067 PMCID: PMC8692573 DOI: 10.1038/s41598-021-03000-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Persistent infection with high-risk types Human Papillomavirus could cause diseases including cervical cancers and oropharyngeal cancers. Nonetheless, so far there is no effective pharmacotherapy for treating the infection from high-risk HPV types, and hence it remains to be a severe threat to the health of female. Based on drug repositioning strategy, we trained and benchmarked multiple machine learning models so as to predict potential effective antiviral drugs for HPV infection in this work. Through optimizing models, measuring models' predictive performance using 182 pairs of antiviral-target interaction dataset which were all approved by the United States Food and Drug Administration, and benchmarking different models' predictive performance, we identified the optimized Support Vector Machine and K-Nearest Neighbor classifier with high precision score were the best two predictors (0.80 and 0.85 respectively) amongst classifiers of Support Vector Machine, Random forest, Adaboost, Naïve Bayes, K-Nearest Neighbors, and Logistic regression classifier. We applied these two predictors together and successfully predicted 57 pairs of antiviral-HPV protein interactions from 864 pairs of antiviral-HPV protein associations. Our work provided good drug candidates for anti-HPV drug discovery. So far as we know, we are the first one to conduct such HPV-oriented computational drug repositioning study.
Collapse
Affiliation(s)
- Hui-Heng Lin
- Yuebei People's Hospital, Shantou University Medical College, No. 133 of Huimin South road, Wujiang District, Shaoguan City, 512025, China.
| | - Qian-Ru Zhang
- Key Lab of the Basic Pharmacology of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou Province, 6 West Xue-Fu Road, Zunyi City, 563000, China
| | - Xiangjun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida de Universidade, Macau, 999078, Macau, China
| | - Liuping Zhang
- Department of Gynecology, Panyu Central Hospital, No. 8 of Fuyu East Road, Panyu District, Guangzhou, 511400, China
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Beibei District, No.1-2-1 Tiansheng Road, Chongqing, 400715, China
| | - Yanyan Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hongyan Xu
- Yuebei People's Hospital, Shantou University Medical College, No. 133 of Huimin South road, Wujiang District, Shaoguan City, 512025, China.
- Department of Gynecology, Yuebei People's Hospital, Shantou University Medical College, No. 133 of Huimin South road, Wujiang District, Shaoguan City, 512025, China.
| |
Collapse
|
16
|
Liu Y, Bi M, Zhang X, Zhang N, Sun G, Zhou Y, Zhao L, Zhong R. Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors. Processes (Basel) 2021; 9:2074. [DOI: 10.3390/pr9112074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Casein kinase 2 (CK2) is considered an important target for anti-cancer drugs. Given the structural diversity and broad spectrum of pharmaceutical activities of natural products, numerous studies have been performed to prove them as valuable sources of drugs. However, there has been little study relevant to identifying structural factors responsible for their inhibitory activity against CK2 with machine learning methods. In this study, classification studies were conducted on 115 natural products as CK2 inhibitors. Seven machine learning methods along with six molecular fingerprints were employed to develop qualitative classification models. The performances of all models were evaluated by cross-validation and test set. By taking predictive accuracy(CA), the area under receiver operating characteristic (AUC), and (MCC)as three performance indicators, the optimal models with high reliability and predictive ability were obtained, including the Extended Fingerprint-Logistic Regression model (CA = 0.859, AUC = 0.826, MCC = 0.520) for training test andPubChem fingerprint along with the artificial neural model (CA = 0.826, AUC = 0.933, MCC = 0.628) for test set. Meanwhile, the privileged substructures responsible for their inhibitory activity against CK2 were also identified through a combination of frequency analysis and information gain. The results are expected to provide useful information for the further utilization of natural products and the discovery of novel CK2 inhibitors.
Collapse
Affiliation(s)
- Yuting Liu
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengzhou Bi
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xuewen Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yue Zhou
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijiao Zhao
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
17
|
Thafar MA, Olayan RS, Albaradei S, Bajic VB, Gojobori T, Essack M, Gao X. DTi2Vec: Drug-target interaction prediction using network embedding and ensemble learning. J Cheminform 2021; 13:71. [PMID: 34551818 PMCID: PMC8459562 DOI: 10.1186/s13321-021-00552-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/05/2021] [Indexed: 11/21/2022] Open
Abstract
Drug-target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive research niche, with one of its main focuses being improving the prediction accuracy. Using machine learning (ML) models for this task, specifically network-based approaches, is effective and has shown great advantages over the other computational methods. However, ML model development involves upstream hand-crafted feature extraction and other processes that impact prediction accuracy. Thus, network-based representation learning techniques that provide automated feature extraction combined with traditional ML classifiers dealing with downstream link prediction tasks may be better-suited paradigms. Here, we present such a method, DTi2Vec, which identifies DTIs using network representation learning and ensemble learning techniques. DTi2Vec constructs the heterogeneous network, and then it automatically generates features for each drug and target using the nodes embedding technique. DTi2Vec demonstrated its ability in drug-target link prediction compared to several state-of-the-art network-based methods, using four benchmark datasets and large-scale data compiled from DrugBank. DTi2Vec showed a statistically significant increase in the prediction performances in terms of AUPR. We verified the "novel" predicted DTIs using several databases and scientific literature. DTi2Vec is a simple yet effective method that provides high DTI prediction performance while being scalable and efficient in computation, translating into a powerful drug repositioning tool.
Collapse
Affiliation(s)
- Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- College of Computers and Information Technology, Computer Science Department, Taif University, Taif, Kingdom of Saudi Arabia
| | - Rawan S Olayan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Lalehzarian SP, Gowd AK, Liu JN. Machine learning in orthopaedic surgery. World J Orthop 2021; 12:685-699. [PMID: 34631452 PMCID: PMC8472446 DOI: 10.5312/wjo.v12.i9.685] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence and machine learning in orthopaedic surgery has gained mass interest over the last decade or so. In prior studies, researchers have demonstrated that machine learning in orthopaedics can be used for different applications such as fracture detection, bone tumor diagnosis, detecting hip implant mechanical loosening, and grading osteoarthritis. As time goes on, the utility of artificial intelligence and machine learning algorithms, such as deep learning, continues to grow and expand in orthopaedic surgery. The purpose of this review is to provide an understanding of the concepts of machine learning and a background of current and future orthopaedic applications of machine learning in risk assessment, outcomes assessment, imaging, and basic science fields. In most cases, machine learning has proven to be just as effective, if not more effective, than prior methods such as logistic regression in assessment and prediction. With the help of deep learning algorithms, such as artificial neural networks and convolutional neural networks, artificial intelligence in orthopaedics has been able to improve diagnostic accuracy and speed, flag the most critical and urgent patients for immediate attention, reduce the amount of human error, reduce the strain on medical professionals, and improve care. Because machine learning has shown diagnostic and prognostic uses in orthopaedic surgery, physicians should continue to research these techniques and be trained to use these methods effectively in order to improve orthopaedic treatment.
Collapse
Affiliation(s)
- Simon P Lalehzarian
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Anirudh K Gowd
- Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States
| | - Joseph N Liu
- USC Epstein Family Center for Sports Medicine, Keck Medicine of USC, Los Angeles, CA 90033, United States
| |
Collapse
|
19
|
Liu F, Li R, Ye J, Ren Y, Tang Z, Li R, Zhang C, Li Q. Study of Aldo-keto Reductase 1C3 Inhibitor with Novel Framework for Treating Leukaemia Based on Virtual Screening and In vitro Biological Activity Testing. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Surfactants, Nanomedicines and Nanocarriers: A Critical Evaluation on Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13030381. [PMID: 33805639 PMCID: PMC7999832 DOI: 10.3390/pharmaceutics13030381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Advances, perspectives and innovation in drug delivery have increased in recent years; however, there is limited information available regarding the actual presence of surfactants, nanomedicines and nanocarriers in investigational medicinal products submitted as part of a request for authorization of clinical trials, particularly for those authorized in the European Economic Area. We retrieve, analyze and report data available at the Clinical Trial Office of the Italian Medicines Agency (AIFA), increasing the transparency and availability of relevant information. An analysis of quality documentation submitted along with clinical trials authorized by the AIFA in 2018 was carried out, focusing on the key terms "surfactant", "nanomedicine" and "nanocarrier". Results suggest potential indications and inputs for further reflection and actions for regulators to actively and safely drive innovation from a regulatory perspective and to transpose upcoming evolution of clinical trials within a strong regulatory framework.
Collapse
|
21
|
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6690154. [PMID: 33628808 PMCID: PMC7889346 DOI: 10.1155/2021/6690154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles, resulting in limited prediction performance. In this study, we propose a new DTI prediction model named AdvB-DTI. Within this model, the features of drug and target expression profiles are associated with Adversarial Bayesian Personalized Ranking through matrix factorization. Firstly, according to the known drug-target relationships, a set of ternary partial order relationships is generated. Next, these partial order relationships are used to train the latent factor matrix of drugs and targets using the Adversarial Bayesian Personalized Ranking method, and the matrix factorization is improved by the features of drug and target expression profiles. Finally, the scores of drug-target pairs are achieved by the inner product of latent factors, and the DTI prediction is performed based on the score ranking. The proposed model effectively takes advantage of the idea of learning to rank to overcome the problem of data sparsity, and perturbation factors are introduced to make the model more robust. Experimental results show that our model could achieve a better DTI prediction performance.
Collapse
|
22
|
Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network. Sci Rep 2021; 11:1696. [PMID: 33462256 PMCID: PMC7813825 DOI: 10.1038/s41598-020-80441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The increased diversity and scale of published biological data has to led to a growing appreciation for the applications of machine learning and statistical methodologies to gain new insights. Key to achieving this aim is solving the Relationship Extraction problem which specifies the semantic interaction between two or more biological entities in a published study. Here, we employed two deep neural network natural language processing (NLP) methods, namely: the continuous bag of words (CBOW), and the bi-directional long short-term memory (bi-LSTM). These methods were employed to predict relations between entities that describe protein subcellular localisation in plants. We applied our system to 1700 published Arabidopsis protein subcellular studies from the SUBA manually curated dataset. The system combines pre-processing of full-text articles in a machine-readable format with relevant sentence extraction for downstream NLP analysis. Using the SUBA corpus, the neural network classifier predicted interactions between protein name, subcellular localisation and experimental methodology with an average precision, recall rate, accuracy and F1 scores of 95.1%, 82.8%, 89.3% and 88.4% respectively (n = 30). Comparable scoring metrics were obtained using the CropPAL database as an independent testing dataset that stores protein subcellular localisation in crop species, demonstrating wide applicability of prediction model. We provide a framework for extracting protein functional features from unstructured text in the literature with high accuracy, improving data dissemination and unlocking the potential of big data text analytics for generating new hypotheses.
Collapse
|
23
|
Chu Y, Shan X, Chen T, Jiang M, Wang Y, Wang Q, Salahub DR, Xiong Y, Wei DQ. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Brief Bioinform 2020; 22:5910189. [PMID: 32964234 DOI: 10.1093/bib/bbaa205] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Identifying drug-target interactions (DTIs) is an important step for drug discovery and drug repositioning. To reduce the experimental cost, a large number of computational approaches have been proposed for this task. The machine learning-based models, especially binary classification models, have been developed to predict whether a drug-target pair interacts or not. However, there is still much room for improvement in the performance of current methods. Multi-label learning can overcome some difficulties caused by single-label learning in order to improve the predictive performance. The key challenge faced by multi-label learning is the exponential-sized output space, and considering label correlations can help to overcome this challenge. In this paper, we facilitate multi-label classification by introducing community detection methods for DTI prediction, named DTI-MLCD. Moreover, we updated the gold standard data set by adding 15,000 more positive DTI samples in comparison to the data set, which has widely been used by most of previously published DTI prediction methods since 2008. The proposed DTI-MLCD is applied to both data sets, demonstrating its superiority over other machine learning methods and several existing methods. The data sets and source code of this study are freely available at https://github.com/a96123155/DTI-MLCD.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Xiaoqi Shan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Tianhang Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Mingming Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
24
|
Dai W, Li L, Guo D. Integrating bioassay data for improved prediction of drug-target interaction. Biophys Chem 2020; 266:106455. [PMID: 32835911 DOI: 10.1016/j.bpc.2020.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
Identifying drug targets is one of the major tasks in drug discovery. As experimental identification of targets is rather challenging, development of computational methods is necessary for efficient identification of drug-target interaction. Traditional computational method, such as docking, is based solely on the chemical structure, which is not available for most of the targets. On the other hand, bioassay data might contain information helpful for prediction of drug-target interaction. In this study, a feature enrichment method integrating bioassay and chemical structure data was developed to predict drug-target interaction. Using a large-scale benchmark on the datasets, we demonstrated that the model adopting integrated fingerprint outperformed the one using chemical fingerprint. Influence of the false positive hits in bioassays and algorithm-related factors on the model performance were also investigated. The results suggested that prediction by using integrated fingerprint was robust to false positive hits, the choice of classifiers, and different random splits of the datasets.
Collapse
Affiliation(s)
- Weixing Dai
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shennan Road 3025, Shenzhen 518000, China
| | - Dianjing Guo
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
25
|
Digital Orthopaedics: A Glimpse Into the Future in the Midst of a Pandemic. J Arthroplasty 2020; 35:S68-S73. [PMID: 32416956 PMCID: PMC7175889 DOI: 10.1016/j.arth.2020.04.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The response to COVID-19 catalyzed the adoption and integration of digital health tools into the health care delivery model for musculoskeletal patients. The change, suspension, or relaxation of Medicare and federal guidelines enabled the rapid implementation of these technologies. The expansion of payment models for virtual care facilitated its rapid adoption. The authors aim to provide several examples of digital health solutions utilized to manage orthopedic patients during the pandemic and discuss what features of these technologies are likely to continue to provide value to patients and clinicians following its resolution. CONCLUSION The widespread adoption of new technologies enabling providers to care for patients remotely has the potential to permanently change the expectations of all stakeholders about the way care is provided in orthopedics. The new era of Digital Orthopaedics will see a gradual and nondisruptive integration of technologies that support the patient's journey through the successful management of their musculoskeletal disease.
Collapse
|
26
|
Thafar MA, Olayan RS, Ashoor H, Albaradei S, Bajic VB, Gao X, Gojobori T, Essack M. DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J Cheminform 2020; 12:44. [PMID: 33431036 PMCID: PMC7325230 DOI: 10.1186/s13321-020-00447-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
In silico prediction of drug–target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computational methods is not an easy task, but is much needed, as current methods that predict potential drug–target interactions suffer from high false-positive rates. Here we introduce DTiGEMS+, a computational method that predicts Drug–Target interactions using Graph Embedding, graph Mining, and Similarity-based techniques. DTiGEMS+ combines similarity-based as well as feature-based approaches, and models the identification of novel drug–target interactions as a link prediction problem in a heterogeneous network. DTiGEMS+ constructs the heterogeneous network by augmenting the known drug–target interactions graph with two other complementary graphs namely: drug–drug similarity, target–target similarity. DTiGEMS+ combines different computational techniques to provide the final drug target prediction, these techniques include graph embeddings, graph mining, and machine learning. DTiGEMS+ integrates multiple drug–drug similarities and target–target similarities into the final heterogeneous graph construction after applying a similarity selection procedure as well as a similarity fusion algorithm. Using four benchmark datasets, we show DTiGEMS+ substantially improves prediction performance compared to other state-of-the-art in silico methods developed to predict of drug-target interactions by achieving the highest average AUPR across all datasets (0.92), which reduces the error rate by 33.3% relative to the second-best performing model in the state-of-the-art methods comparison.
Collapse
Affiliation(s)
- Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Collage of Computers and Information Technology, Taif University, Taif, Kingdom of Saudi Arabia
| | - Rawan S Olayan
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Haitham Ashoor
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
27
|
Chen ZH, You ZH, Guo ZH, Yi HC, Luo GX, Wang YB. Prediction of Drug-Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model. Front Bioeng Biotechnol 2020; 8:338. [PMID: 32582646 PMCID: PMC7283956 DOI: 10.3389/fbioe.2020.00338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Predicting drug-target interactions (DTIs) is crucial in innovative drug discovery, drug repositioning and other fields. However, there are many shortcomings for predicting DTIs using traditional biological experimental methods, such as the high-cost, time-consumption, low efficiency, and so on, which make these methods difficult to widely apply. As a supplement, the in silico method can provide helpful information for predictions of DTIs in a timely manner. In this work, a deep walk embedding method is developed for predicting DTIs from a multi-molecular network. More specifically, a multi-molecular network, also called molecular associations network, is constructed by integrating the associations among drug, protein, disease, lncRNA, and miRNA. Then, each node can be represented as a behavior feature vector by using a deep walk embedding method. Finally, we compared behavior features with traditional attribute features on an integrated dataset by using various classifiers. The experimental results revealed that the behavior feature could be performed better on different classifiers, especially on the random forest classifier. It is also demonstrated that the use of behavior information is very helpful for addressing the problem of sequences containing both self-interacting and non-interacting pairs of proteins. This work is not only extremely suitable for predicting DTIs, but also provides a new perspective for the prediction of other biomolecules' associations.
Collapse
Affiliation(s)
- Zhan-Heng Chen
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhu-Hong You
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Hao Guo
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Cheng Yi
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gong-Xu Luo
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Bin Wang
- School of Cyber Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Metal-on-Metal Total Hip Revisions: Pearls and Pitfalls. J Arthroplasty 2020; 35:S68-S72. [PMID: 32081501 DOI: 10.1016/j.arth.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND At the turn of the 21st century, there was a re-emergence of metal-on-metal (MoM) articulation with 35% of all total hip arthroplasty implants having MoM articulation. Approximately 10 years after its peak use, MoM articulation began to decrease dramatically as revisions became more apparent because of adverse reaction to metal debris. Today, there are surveillance guidelines and reconstructive clinical pearls a surgeon should recognize. METHODS This article gives a literature-based overview of clinical pearls and discusses how to avoid pitfalls when performing revision of a metal-on-metal total hip arthroplasty. RESULTS Patients with MoM can be risk-stratified based on symptom, implant, and testing variables. Those patients who are symptomatic and/or develop adverse reaction to metal debris with local tissue destruction will require a revision. The revision of MoM can be challenging due to bone and soft tissue destruction. Constraint may be needed in cases of abductor deficiency. CONCLUSION Although MoM implants for THA have declined significantly, surgeons are still faced with the revision burden from a decade of high use. Risk stratification tools are available to aid in revision decision making, and the surgeon should be prepared to address the challenges these revisions present.
Collapse
|
29
|
Wang P, Huang X, Qiu W, Xiao X. Identifying GPCR-drug interaction based on wordbook learning from sequences. BMC Bioinformatics 2020; 21:150. [PMID: 32312232 PMCID: PMC7171867 DOI: 10.1186/s12859-020-3488-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) mediate a variety of important physiological functions, are closely related to many diseases, and constitute the most important target family of modern drugs. Therefore, the research of GPCR analysis and GPCR ligand screening is the hotspot of new drug development. Accurately identifying the GPCR-drug interaction is one of the key steps for designing GPCR-targeted drugs. However, it is prohibitively expensive to experimentally ascertain the interaction of GPCR-drug pairs on a large scale. Therefore, it is of great significance to predict the interaction of GPCR-drug pairs directly from the molecular sequences. With the accumulation of known GPCR-drug interaction data, it is feasible to develop sequence-based machine learning models for query GPCR-drug pairs. RESULTS In this paper, a new sequence-based method is proposed to identify GPCR-drug interactions. For GPCRs, we use a novel bag-of-words (BoW) model to extract sequence features, which can extract more pattern information from low-order to high-order and limit the feature space dimension. For drug molecules, we use discrete Fourier transform (DFT) to extract higher-order pattern information from the original molecular fingerprints. The feature vectors of two kinds of molecules are concatenated and input into a simple prediction engine distance-weighted K-nearest-neighbor (DWKNN). This basic method is easy to be enhanced through ensemble learning. Through testing on recently constructed GPCR-drug interaction datasets, it is found that the proposed methods are better than the existing sequence-based machine learning methods in generalization ability, even an unconventional method in which the prediction performance was further improved by post-processing procedure (PPP). CONCLUSIONS The proposed methods are effective for GPCR-drug interaction prediction, and may also be potential methods for other target-drug interaction prediction, or protein-protein interaction prediction. In addition, the new proposed feature extraction method for GPCR sequences is the modified version of the traditional BoW model and may be useful to solve problems of protein classification or attribute prediction. The source code of the proposed methods is freely available for academic research at https://github.com/wp3751/GPCR-Drug-Interaction.
Collapse
Affiliation(s)
- Pu Wang
- Computer School, Hubei University of Arts and Science, Xiangyang, 441053 China
| | - Xiaotong Huang
- Computer School, Hubei University of Arts and Science, Xiangyang, 441053 China
| | - Wangren Qiu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, 333403 China
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, 333403 China
| |
Collapse
|
30
|
Pliakos K, Vens C. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinformatics 2020; 21:49. [PMID: 32033537 PMCID: PMC7006075 DOI: 10.1186/s12859-020-3379-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background Computational prediction of drug-target interactions (DTI) is vital for drug discovery. The experimental identification of interactions between drugs and target proteins is very onerous. Modern technologies have mitigated the problem, leveraging the development of new drugs. However, drug development remains extremely expensive and time consuming. Therefore, in silico DTI predictions based on machine learning can alleviate the burdensome task of drug development. Many machine learning approaches have been proposed over the years for DTI prediction. Nevertheless, prediction accuracy and efficiency are persisting problems that still need to be tackled. Here, we propose a new learning method which addresses DTI prediction as a multi-output prediction task by learning ensembles of multi-output bi-clustering trees (eBICT) on reconstructed networks. In our setting, the nodes of a DTI network (drugs and proteins) are represented by features (background information). The interactions between the nodes of a DTI network are modeled as an interaction matrix and compose the output space in our problem. The proposed approach integrates background information from both drug and target protein spaces into the same global network framework. Results We performed an empirical evaluation, comparing the proposed approach to state of the art DTI prediction methods and demonstrated the effectiveness of the proposed approach in different prediction settings. For evaluation purposes, we used several benchmark datasets that represent drug-protein networks. We show that output space reconstruction can boost the predictive performance of tree-ensemble learning methods, yielding more accurate DTI predictions. Conclusions We proposed a new DTI prediction method where bi-clustering trees are built on reconstructed networks. Building tree-ensemble learning models with output space reconstruction leads to superior prediction results, while preserving the advantages of tree-ensembles, such as scalability, interpretability and inductive setting.
Collapse
Affiliation(s)
- Konstantinos Pliakos
- KU Leuven, Campus KULAK, Faculty of Medicine, Kortrijk, Belgium. .,ITEC, imec research group at KU Leuven, Kortrijk, Belgium.
| | - Celine Vens
- KU Leuven, Campus KULAK, Faculty of Medicine, Kortrijk, Belgium.,ITEC, imec research group at KU Leuven, Kortrijk, Belgium
| |
Collapse
|
31
|
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 2020; 22:247-269. [PMID: 31950972 PMCID: PMC7820849 DOI: 10.1093/bib/bbz157] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Collapse
Affiliation(s)
- Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elyas Sabeti
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Kayvan Najarian
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
32
|
Chu Y, Kaushik AC, Wang X, Wang W, Zhang Y, Shan X, Salahub DR, Xiong Y, Wei DQ. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief Bioinform 2019; 22:451-462. [PMID: 31885041 DOI: 10.1093/bib/bbz152] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | - Xiangeng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Wei Wang
- Mathematical Sciences, Shanghai Jiao Tong University
| | - Yufang Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | | | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
33
|
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Trader as a new optimization algorithm predicts drug-target interactions efficiently. Sci Rep 2019; 9:9348. [PMID: 31249365 PMCID: PMC6597553 DOI: 10.1038/s41598-019-45814-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Several machine learning approaches have been proposed for predicting new benefits of the existing drugs. Although these methods have introduced new usage(s) of some medications, efficient methods can lead to more accurate predictions. To this end, we proposed a novel machine learning method which is based on a new optimization algorithm, named Trader. To show the capabilities of the proposed algorithm which can be applied to the different scope of science, it was compared with ten other state-of-the-art optimization algorithms based on the standard and advanced benchmark functions. Next, a multi-layer artificial neural network was designed and trained by Trader to predict drug-target interactions (DTIs). Finally, the functionality of the proposed method was investigated on some DTIs datasets and compared with other methods. The data obtained by Trader showed that it eliminates the disadvantages of different optimization algorithms, resulting in a better outcome. Further, the proposed machine learning method was found to achieve a significant level of performance compared to the other popular and efficient approaches in predicting unknown DTIs. All the implemented source codes are freely available at https://github.com/LBBSoft/Trader .
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Amanlou
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176-53955, Iran
| | - Ali Masoudi-Nejad
- Laboratory of systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|