1
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Christensen BC, Salas LA. HiTIMED: hierarchical tumor immune microenvironment epigenetic deconvolution for accurate cell type resolution in the tumor microenvironment using tumor-type-specific DNA methylation data. J Transl Med 2022; 20:516. [DOI: 10.1186/s12967-022-03736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Cellular compositions of solid tumor microenvironments are heterogeneous, varying across patients and tumor types. High-resolution profiling of the tumor microenvironment cell composition is crucial to understanding its biological and clinical implications. Previously, tumor microenvironment gene expression and DNA methylation-based deconvolution approaches have been shown to deconvolve major cell types. However, existing methods lack accuracy and specificity to tumor type and include limited identification of individual cell types.
Results
We employed a novel tumor-type-specific hierarchical model using DNA methylation data to deconvolve the tumor microenvironment with high resolution, accuracy, and specificity. The deconvolution algorithm is named HiTIMED. Seventeen cell types from three major tumor microenvironment components can be profiled (tumor, immune, angiogenic) by HiTIMED, and it provides tumor-type-specific models for twenty carcinoma types. We demonstrate the prognostic significance of cell types that other tumor microenvironment deconvolution methods do not capture.
Conclusion
We developed HiTIMED, a DNA methylation-based algorithm, to estimate cell proportions in the tumor microenvironment with high resolution and accuracy. HiTIMED deconvolution is amenable to archival biospecimens providing high-resolution profiles enabling to study of clinical and biological implications of variation and composition of the tumor microenvironment.
Collapse
|
2
|
Miao R, Dang Q, Cai J, Huang HH, Xie SL, Liang Y. Sparse principal component analysis based on genome network for correcting cell type heterogeneity in epigenome-wide association studies. Med Biol Eng Comput 2022; 60:2601-2618. [DOI: 10.1007/s11517-022-02599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/30/2022] [Indexed: 10/17/2022]
|
3
|
Advani D, Sharma S, Kumari S, Ambasta RK, Kumar P. Precision Oncology, Signaling and Anticancer Agents in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:433-468. [PMID: 33687887 DOI: 10.2174/1871520621666210308101029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global alliance for genomics and healthcare facilities provides innovational solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention and treatment based on patients' genetic profile. Advancements in "omics" techniques, next-generation sequencing, artificial intelligence and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures. METHOD Data were collected from Pubmed and Google scholar using keywords: "Precision medicine", "precision medicine and cancer", "anticancer agents in precision medicine" and reviewed comprehensively. RESULTS Personalized therapeutics including immunotherapy, cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described along with various hurdles identified in the successful establishment of precision therapeutics. CONCLUSION This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival and in improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| |
Collapse
|
4
|
Liu D, Zhao L, Wang Z, Zhou X, Fan X, Li Y, Xu J, Hu S, Niu M, Song X, Li Y, Zuo L, Lei C, Zhang M, Tang G, Huang M, Zhang N, Duan L, Lv H, Zhang M, Li J, Xu L, Kong F, Feng R, Jiang Y. EWASdb: epigenome-wide association study database. Nucleic Acids Res 2020; 47:D989-D993. [PMID: 30321400 PMCID: PMC6323898 DOI: 10.1093/nar/gky942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
DNA methylation, the most intensively studied epigenetic modification, plays an important role in understanding the molecular basis of diseases. Furthermore, epigenome-wide association study (EWAS) provides a systematic approach to identify epigenetic variants underlying common diseases/phenotypes. However, there is no comprehensive database to archive the results of EWASs. To fill this gap, we developed the EWASdb, which is a part of 'The EWAS Project', to store the epigenetic association results of DNA methylation from EWASs. In its current version (v 1.0, up to July 2018), the EWASdb has curated 1319 EWASs associated with 302 diseases/phenotypes. There are three types of EWAS results curated in this database: (i) EWAS for single marker; (ii) EWAS for KEGG pathway and (iii) EWAS for GO (Gene Ontology) category. As the first comprehensive EWAS database, EWASdb has been searched or downloaded by researchers from 43 countries to date. We believe that EWASdb will become a valuable resource and significantly contribute to the epigenetic research of diseases/phenotypes and have potential clinical applications. EWASdb is freely available at http://www.ewas.org.cn/ewasdb or http://www.bioapp.org/ewasdb.
Collapse
Affiliation(s)
- Di Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Linna Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Zhaoyang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xiuzhao Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Yong Li
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Simeng Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Miaomiao Niu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xiuling Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Ying Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Lijiao Zuo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Changgui Lei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Meng Zhang
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Guoping Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Min Huang
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Lian Duan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liangde Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rennan Feng
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry 2019; 10:808. [PMID: 31780969 PMCID: PMC6857662 DOI: 10.3389/fpsyt.2019.00808] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build.
Collapse
Affiliation(s)
- Shui Jiang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine J. Aitchison
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Luo X, Yang C, Wei Y. Detection of cell-type-specific risk-CpG sites in epigenome-wide association studies. Nat Commun 2019; 10:3113. [PMID: 31308366 PMCID: PMC6629651 DOI: 10.1038/s41467-019-10864-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
In epigenome-wide association studies, the measured signals for each sample are a mixture of methylation profiles from different cell types. Current approaches to the association detection claim whether a cytosine-phosphate-guanine (CpG) site is associated with the phenotype or not at aggregate level and can suffer from low statistical power. Here, we propose a statistical method, HIgh REsolution (HIRE), which not only improves the power of association detection at aggregate level as compared to the existing methods but also enables the detection of risk-CpG sites for individual cell types. Cellular heterogeneity is one of the major confounding factors in EWAS studies. Here the authors present a statistical method, HIgh REsolution (HIRE), which enables the detection of risk-CpG sites for individual cell types.
Collapse
Affiliation(s)
- Xiangyu Luo
- Institute of Statistics and Big Data, Renmin University of China, 100872, Beijing, China.,Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Can Yang
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Sharp GC, Stergiakouli E, Sandy J, Relton C. Epigenetics and Orofacial Clefts: A Brief Introduction. Cleft Palate Craniofac J 2018; 55:795-797. [PMID: 28085511 DOI: 10.1597/16-124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Mimura I, Tanaka T, Nangaku M. New insights into molecular mechanisms of epigenetic regulation in kidney disease. Clin Exp Pharmacol Physiol 2017; 43:1159-1167. [PMID: 27560313 DOI: 10.1111/1440-1681.12663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 12/11/2022]
Abstract
The number of patients with kidney failure has increased in recent years. Different factors contribute to the progression of chronic kidney disease, including glomerular sclerosis, atherosclerosis of the renal arteries and tubulointerstitial fibrosis. Tubulointerstitial injury is induced by hypoxia and other inflammatory signals, leading to fibroblast activation. Technological advances using high-throughput sequencing has enabled the determination of the expression profile of almost all genes, revealing that gene expression is intricately regulated by DNA methylation, histone modification, changes in chromosome conformation, long non-coding RNAs and microRNAs. These epigenetic modifications are stored as cellular epigenetic memory. Epigenetic memory leads to adult-onset disease or ageing in the long term and may possibly play an important role in the kidney disease process. Herein we emphasize the importance of clarifying the molecular mechanisms underlying epigenetic modifications because this may lead to the development of new therapeutic targets in kidney disease.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
EWAS: epigenome-wide association studies software 1.0 - identifying the association between combinations of methylation levels and diseases. Sci Rep 2016; 6:37951. [PMID: 27892496 PMCID: PMC5125000 DOI: 10.1038/srep37951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Similar to the SNP (single nucleotide polymorphism) data, there is non-random association of the DNA methylation level (we call it methylation disequilibrium, MD) between neighboring methylation loci. For the case-control study of complex diseases, it is important to identify the association between methylation levels combination types (we call it methylecomtype) and diseases/phenotypes. We extended the classical framework of SNP haplotype-based association study in population genetics to DNA methylation level data, and developed a software EWAS to identify the disease-related methylecomtypes. EWAS can provide the following basic functions: (1) calculating the DNA methylation disequilibrium coefficient between two CpG loci; (2) identifying the MD blocks across the whole genome; (3) carrying out case-control association study of methylecomtypes and identifying the disease-related methylecomtypes. For a DNA methylation level data set including 689 samples (354 cases and 335 controls) and 473864 CpG loci, it takes only about 25 min to complete the full scan. EWAS v1.0 can rapidly identify the association between combinations of methylation levels (methylecomtypes) and diseases. EWAS v1.0 is freely available at: http://www.ewas.org.cn or http://www.bioapp.org/ewas.
Collapse
|
10
|
|
11
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|
12
|
Hobbs A, Ramsay M. Epigenetics and the burden of noncommunicable disease: a paucity of research in Africa. Epigenomics 2016; 7:627-39. [PMID: 26111033 DOI: 10.2217/epi.15.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epidemiological evidence suggests that an adverse in utero environment is associated with an increased risk for developing adult onset diseases. The molecular mechanisms for susceptibility to chronic noncommunicable diseases are not fully understood, although recent research has proposed that epigenetic modifications play an important role in fetal programming. Genetic and environmental factors contribute to interindividual and spatiotemporal tissue-specific methylation patterns. Although the diverse environments and high genetic diversity of African populations provide unparalleled potential to investigate the effects of environmental change on the epigenetic profile in humans, only a small percentage of genomic and epigenetic studies have focused on populations from this continent. This emphasizes the need to build capacity in Africa for research that leads to an understanding of the association between genetic, epigenetic and environmental risk factors for noncommunicable diseases on the continent.
Collapse
Affiliation(s)
- Angela Hobbs
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences & the Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Genetic data: The new challenge of personalized medicine, insights for rheumatoid arthritis patients. Gene 2016; 583:90-101. [PMID: 26869316 DOI: 10.1016/j.gene.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/18/2016] [Accepted: 02/05/2016] [Indexed: 01/15/2023]
Abstract
Rapid advances in genotyping technology, analytical methods, and the establishment of large cohorts for population genetic studies have resulted in a large new body of information about the genetic basis of human rheumatoid arthritis (RA). Improved understanding of the root pathogenesis of the disease holds the promise of improved diagnostic and prognostic tools based upon this information. In this review, we summarize the nature of new genetic findings in human RA, including susceptibility loci and gene-gene and gene-environment interactions, as well as genetic loci associated with sub-groups of patients and those associated with response to therapy. Possible uses of these data are discussed, such as prediction of disease risk as well as personalized therapy and prediction of therapeutic response and risk of adverse events. While these applications are largely not refined to the point of clinical utility in RA, it seems likely that multi-parameter datasets including genetic, clinical, and biomarker data will be employed in the future care of RA patients.
Collapse
|
14
|
Roznovăţ IA, Ruskin HJ. Theoretical cross-comparative analysis on dynamics of small intestine and colon crypts during cancer initiation. IET Syst Biol 2015; 9:259-67. [PMID: 26577160 DOI: 10.1049/iet-syb.2015.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetics is emerging as a fundamentally important area of biological and medical research that has implications for our understanding of human diseases including cancer, autoimmune and neuropsychiatric disorders. In the context of recent efforts on personalised medicine, a novel research direction is concerned with identification of intra-individual epigenetic variation linked to disease predisposition and development, i.e. epigenome-wide association studies. A computational model has been developed to describe the dynamics and structure of human intestinal crypts and to perform a comparative analysis on aberrant DNA methylation level induced in these during cancer initiation. The crypt framework, AgentCrypt, is an agent-based model of crypt dynamics, which handles intra- and inter-dependencies. In addition, the AgentCrypt model is used to investigate the effect of a set of potential inhibitors with respect to methylation modification in intestinal tissue during initiation of disease. Methylation level decrease over a relatively short period of 90 days is marked for the colon compared to the small intestine, although similar alterations are induced in both tissues. In addition, inhibitor effect is notable for abnormal crypt groups, with largest average methylation differences observed ≈0.75% lower in the colon and ≈0.79% lower in the small intestine with inhibitor present.
Collapse
Affiliation(s)
- Irina A Roznovăţ
- Current address: European Institute for Systems Biology and Medicine (EISBM), CNRS-ENS-UCBL, Campus Charles Mérieux, Université de Lyon, 50 Avenue Tony Garnier, 69366 Lyon cedex 07, France.
| | - Heather J Ruskin
- Centre for Scientific Computing & Complex Systems Modelling (SCI-SYM), School of Computing, Dublin City University, Dublin, Ireland
| |
Collapse
|
15
|
van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, Mattiello A, Palli D, Masala G, Krogh V, Agnoli C, Tumino R, Frasca G, Flower K, Curry E, Orr N, Tomczyk K, Jones ME, Ashworth A, Swerdlow A, Chadeau-Hyam M, Lund E, Garcia-Closas M, Sandanger TM, Flanagan JM, Vineis P. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics 2015; 7:67. [PMID: 26244061 PMCID: PMC4524428 DOI: 10.1186/s13148-015-0104-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168 matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement for epigenome-wide methylation. RESULTS In EPIC, we found that high epigenome-wide methylation was associated with lower risk of breast cancer (odds ratio (OR) per 1 SD = 0.61, 95 % confidence interval (CI) 0.47-0.80; -0.2 % average difference in epigenome-wide methylation for cases and controls). Specifically, this was observed in gene bodies (OR = 0.51, 95 % CI 0.38-0.69) but not in gene promoters (OR = 0.92, 95 % CI 0.64-1.32). The association was not replicated in NOWAC (OR = 1.03 95 % CI 0.81-1.30). The reasons for heterogeneity across studies are unclear. However, data from the BGS cohort was consistent with epigenome-wide hypomethylation in breast cancer cases across the overlapping 450k probe sites (difference in average epigenome-wide methylation in case and control DNA pools = -0.2 %). CONCLUSIONS We conclude that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may be predictive of breast cancer risk and may thus be useful as a clinical biomarker.
Collapse
Affiliation(s)
- Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK.,HuGeF Foundation, 52, Via Nizza, Torino, 10126 Italy
| | | | | | | | | | - Salvatore Panico
- Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Amalia Mattiello
- Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Kirsty Flower
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Ed Curry
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Nicholas Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Katarzyna Tomczyk
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK
| | - Eiliv Lund
- Department of Community Medicine, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Montserrat Garcia-Closas
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT-the Arctic University of Norway, Tromsø, Norway
| | - James M Flanagan
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK.,HuGeF Foundation, 52, Via Nizza, Torino, 10126 Italy
| |
Collapse
|
16
|
DNA methylation levels are highly correlated between pooled samples and averaged values when analysed using the Infinium HumanMethylation450 BeadChip array. Clin Epigenetics 2015; 7:78. [PMID: 26236407 PMCID: PMC4521379 DOI: 10.1186/s13148-015-0097-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA methylation is a heritable and stable epigenetic mark implicated in complex human traits. Epigenome-wide association studies (EWAS) using array-based technology are becoming widely used to identify differentially methylated sites associated with complex diseases. EWAS studies require large sample sizes to detect small effects, which increases project costs. In the present study we propose to pool DNA samples in methylation array studies as an affordable and accurate alternative to individual samples studies, in order to reduce economic costs or when low amounts of DNA are available. For this study, 20 individual DNA samples and 4 pooled DNA samples were analysed using the Illumina Infinium HumanMethylation450 BeadChip array to evaluate the efficiency of the pooling approach in EWAS studies. Statistical power calculations were also performed to discover the minimum sample size needed for the pooling strategy in EWAS. RESULTS A total of 485,577 CpG sites across the whole genome were assessed. Comparison of methylation levels of all CpG sites between individual samples and their related pooled samples revealed highly significant correlations (rho > 0.99, p-val < 10(-16)). These results remained similar when assessing the 101 most differentially methylated CpG sites (rho > 0.98, p-val < 10(-16)). Also, it was calculated that n = 43 is the minimum sample size required to achieve a 95 % statistical power and a 10(-06) significance level in EWAS, when using a DNA pool strategy. CONCLUSIONS DNA pooling strategies seems to accurately provide estimations of averaged DNA methylation state using array based EWAS studies. This type of approach can be applied to the assessment of disease phenotypes, reducing the amount of DNA required and the cost of large-scale epigenetic analyses.
Collapse
|
17
|
Abstract
Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.
Collapse
|
18
|
Verma M, Lam TK, Hebert E, Divi RL. Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 2015; 15:6. [PMID: 25883534 PMCID: PMC4399158 DOI: 10.1186/s12907-015-0005-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. In addition, EVs may offer a non-invasive means to assess cancer initiation, progression, risk, survival, and treatment outcomes. The goal of this review is to highlight the current status of information on the role of EVs in cancer, and to explore the utility of EVs for cancer diagnosis, prognosis, and epidemiology.
Collapse
Affiliation(s)
- Mukesh Verma
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Tram Kim Lam
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Elizabeth Hebert
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Rao L Divi
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|
19
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
20
|
Chadwick LH, Sawa A, Yang IV, Baccarelli A, Breakefield XO, Deng HW, Dolinoy DC, Fallin MD, Holland NT, Houseman EA, Lomvardas S, Rao M, Satterlee JS, Tyson FL, Vijayanand P, Greally JM. New insights and updated guidelines for epigenome-wide association studies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.nepig.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Abstract
Just as genome-wide association studies (GWAS) grew from the field of genetic epidemiology, so too do epigenome-wide association studies (EWAS) derive from the burgeoning field of epigenetic epidemiology, with both aiming to understand the molecular basis for disease risk. While genetic risk of disease is currently unmodifiable, there is hope that epigenetic risk may be reversible and or modifiable. This review will take a look back at the origins of this field and revisit the past early efforts to conduct EWAS using the 27k Illumina methylation beadarrays, to the present where most investigators are using the 450k Illumina beadarrays and finally to the future where next generation sequencing based methods beckon. There have been numerous diseases, exposures and lifestyle factors investigated with EWAS, with several significant associations now identified. However, much like the GWAS studies, EWAS are likely to require large international consortium-based approaches to reach the numbers of subjects, and statistical and scientific rigor, required for robust findings.
Collapse
Affiliation(s)
- James M Flanagan
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK,
| |
Collapse
|
22
|
Verma M. Molecular profiling and companion diagnostics: where is personalized medicine in cancer heading? Per Med 2014; 11:761-771. [PMID: 29764045 DOI: 10.2217/pme.14.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The goal of personalized medicine is to use the right drug at the right dose - with minimal or no toxicity - for the right patient at the right time. Recent advances in understanding cell biology and pathways, and in using molecular 'omics' technologies to diagnose cancer, offer a strategic bridge to personalized medicine in cancer. Modern personalized medicine takes into account an individual's genetic makeup and disease history before developing a treatment regimen. The future of clinical oncology will be based on the use of predictive and prognostic biomarkers in patient management. Once implemented widely, personalized medicine will benefit patients and the healthcare system greatly.
Collapse
|
23
|
The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun 2014; 5:5195. [PMID: 25327398 PMCID: PMC4300104 DOI: 10.1038/ncomms6195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure.
Collapse
|
24
|
Eskola PJ, Männikkö M, Samartzis D, Karppinen J. Genome-wide association studies of lumbar disc degeneration--are we there yet? Spine J 2014; 14:479-82. [PMID: 24210639 DOI: 10.1016/j.spinee.2013.07.437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/14/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Pasi J Eskola
- Department of Physical and Rehabilitation Medicine, Institute of Clinical Medicine, University of Oulu, and Medical Research Center Oulu, Box 5000, 90014 Oulu, Finland
| | - Minna Männikkö
- Institute of Health Sciences, Biocenter Oulu, University of Oulu, Box 5000, 90014 Oulu, Finland
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Rd, Pokfulam, Hong Kong, SAR, China
| | - Jaro Karppinen
- Department of Physical and Rehabilitation Medicine, Institute of Clinical Medicine, University of Oulu, and Medical Research Center Oulu, Box 5000, 90014 Oulu, Finland.
| |
Collapse
|
25
|
Ashbrook DG, Hager R. Empirical testing of hypotheses about the evolution of genomic imprinting in mammals. Front Neuroanat 2013; 7:6. [PMID: 23641202 PMCID: PMC3639422 DOI: 10.3389/fnana.2013.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023] Open
Abstract
The close interaction between mother and offspring in mammals is thought to contribute to the evolution of genomic imprinting or parent-of-origin dependent gene expression. Empirical tests of theories about the evolution of imprinting have been scant for several reasons. Models make different assumptions about the traits affected by imprinted genes and the scenarios in which imprinting is predicted to have been selected for. Thus, competing hypotheses cannot readily be tested against each other. Further, it is far from clear how predictions about expression patterns of genes with specific phenotypic effects can be tested given current methodology of assaying gene expression levels, be it in the brain or in other tissues. We first set out a scenario for testing competing hypotheses and delineate the different assumptions and predictions of models. We then outline how predictions may be tested using mouse models such as intercrosses or recombinant inbred (RI) systems that can be phenotyped for traits relevant to imprinting theories. Further, we briefly discuss different molecular approaches that may be used in conjunction with experiments to ascertain expression patterns of imprinted genes and thus the testing of predictions.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|