1
|
Tabanifar B, Lau H, Sabapathy K. Tumor suppressor genes in the tumor microenvironment. Dis Model Mech 2025; 18:dmm052049. [PMID: 40110599 PMCID: PMC11957449 DOI: 10.1242/dmm.052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Tumor suppressor genes (TSGs) are thought to suppress tumor development primarily via cancer cell-autonomous mechanisms. However, the tumor microenvironment (TME) also significantly influences tumorigenesis. In this context, a role for TSGs in the various cell types of the TME in regulating tumor growth is emerging. Indeed, expression analyses of TSGs in clinical samples, along with data from mouse models in which TSGs were deleted selectively in the TME, indicate a functional role for them in tumor development. In this Perspective, using TP53 and PTEN as examples, we posit that TSGs play a significant role in cells of the TME in regulating tumor development, and postulate both a 'pro-active' and 'reactive' model for their contribution to tumor growth, dependent on the temporal sequence of initiating events. Finally, we discuss the need to consider a 2-in-1 cancer-treatment strategy to improve the efficacy of clearance of cancer cells and the cancer-promoting TME.
Collapse
Affiliation(s)
- Bahareh Tabanifar
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore 168583
| | - Hannah Lau
- Department of Physiology, National University of Singapore, Singapore 117558
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Kanaga Sabapathy
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
2
|
Khan AQ, Al-Tamimi M, Anver R, Agha MV, Anamangadan G, Raza SS, Ahmad F, Ahmad A, Alam M, Buddenkotte J, Steinhoff M, Uddin S. Targeting of S-phase kinase associated protein 2 stabilized tumor suppressors leading to apoptotic cell death in squamous skin cancer cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167286. [PMID: 38866114 DOI: 10.1016/j.bbadis.2024.167286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Maha Al-Tamimi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rasheeda Anver
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gazala Anamangadan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
3
|
Arslan Bozdag L, Inan S, Elif Gultekin S. Microsatellite Instability and Loss of Heterozygosity as Prognostic Markers in Oral Squamous Cell Carcinoma: Molecular Mechanisms, Detection Techniques, and Therapeutic Strategies. Genes Chromosomes Cancer 2024; 63:e70002. [PMID: 39470253 DOI: 10.1002/gcc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
The aim of this study was to conduct a systematic review of research investigating the potential role of microsatellite instability (MSI) and loss of heterozygosity (LOH) in oral squamous cell carcinoma (OSCC), with a focus on molecular mechanisms, detection methods, and therapeutic approaches. Search for articles involved the PubMed and Scopus. Previous retrospective and prospective studies identified variations between oral cancers that exhibit microsatellite stability and LOH. In this search, 294 articles were initially retrieved. Of these, 70 were excluded due to duplication, 106 were identified as ineligible by automated tools, and 24 were excluded as they were published in languages other than English. An additional 94 articles were excluded, 32 of which focused on head and neck cancers broadly, and 8 could not be accessed due to withdrawal. Ultimately, a systematic review was conducted based on 54 selected articles. Among the chromosomes analyzed for MSI and LOH, the highest frequency of LOH was observed on chromosome 9p. The MSI subtype is particularly susceptible to immunotherapeutic methods, such as the use of anti-PD-L1 and anti-CTLA4 antibodies, owing to its strong immunogenicity and ubiquitous expression of immune checkpoint ligands. Given the distinct characteristics and clinical behavior of oral cancer with MSI compared to microsatellite stable disease, it is advisable to incorporate MSI testing into the diagnostic process for all stages of tumor development. This ensured that each patient had received precise and effective treatment.
Collapse
Affiliation(s)
- Leyla Arslan Bozdag
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
- Faculty of Dentistry, Department of Oral Pathology, Gazi University, Ankara, Turkey
| | - Sevinç Inan
- Tepebasi Oral Dental Health Centre, Ankara, Turkey
| | - Sibel Elif Gultekin
- Faculty of Dentistry, Department of Oral Pathology, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Naing C, Ni H, Aung HH, Htet NH, Nikolova D. Gene therapy for people with hepatocellular carcinoma. Cochrane Database Syst Rev 2024; 6:CD013731. [PMID: 38837373 PMCID: PMC11152182 DOI: 10.1002/14651858.cd013731.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Gene therapy, which uses genes to treat or prevent diseases, holds potential for treatment, especially for tumours. Trials on the effects of gene therapy in people with hepatocellular carcinoma have been published or are ongoing. OBJECTIVES To evaluate the benefits and harms of gene therapy in people with hepatocellular carcinoma, irrespective of sex, administered dose, and type of formulation. SEARCH METHODS We identified randomised clinical trials through electronic searches in The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index Expanded, and Conference Proceedings Citation Index-Science. We searched five online clinical trial registries to identify unpublished or ongoing trials. We checked reference lists of the retrieved studies for further trials. The date of last search was 20 January 2023. SELECTION CRITERIA We aimed to include randomised clinical trials assessing any type of gene therapy in people diagnosed with hepatocellular carcinoma, irrespective of year, language of publication, format, or outcomes reported. DATA COLLECTION AND ANALYSIS We followed Cochrane methodology and used Review Manager to prepare the review. The primary outcomes were all-cause mortality/overall survival (whatever data were provided), serious adverse events during treatment, and health-related quality of life. The secondary outcomes were proportion of people with disease progression, adverse events considered non-serious, and proportion of people without improvement in liver function tests. We assessed risk of bias of the included trials using RoB 2 and the certainty of evidence using GRADE. We presented the results of time-to-event outcomes as hazard ratios (HR), dichotomous outcomes as risk ratios (RR), and continuous outcomes as mean difference (MD) with their 95% confidence intervals (CI). Our primary analyses were based on intention-to-treat and outcome data at the longest follow-up. MAIN RESULTS We included six randomised clinical trials with 364 participants. The participants had unresectable (i.e. advanced inoperable) hepatocellular carcinoma. We found no trials assessing the effects of gene therapy in people with operable hepatocellular carcinoma. Four trials were conducted in China, one in several countries (from North America, Asia, and Europe), and one in Egypt. The number of participants in the six trials ranged from 10 to 129 (median 47), median age was 55.2 years, and the mean proportion of males was 72.7%. The follow-up duration ranged from six months to five years. As the trials compared different types of gene therapy and had different controls, we could not perform meta-analyses. Five of the six trials administered co-interventions equally to the experimental and control groups. All trials assessed one or more outcomes of interest in this review. The certainty of evidence was very low in five of the six comparisons and low in the double-dose gene therapy comparison. Below, we reported the results of the primary outcomes only. Pexastimogene devacirepvec (Pexa-Vec) plus best supportive care versus best supportive care alone There is uncertainty about whether there may be little to no difference between the effect of Pexa-Vec plus best supportive care compared with best supportive care alone on overall survival (HR 1.19, 95% CI 0.78 to 1.82; 1 trial (censored observation at 20-month follow-up), 129 participants; very low-certainty evidence) and on serious adverse events (RR 1.42, 95% CI 0.60 to 3.33; 1 trial at 20 months after treatment, 129 participants; very low-certainty evidence). The trial reported quality of life narratively as "assessment of quality of life and time to symptomatic progression was confounded by the high patient dropout rate." Adenovirus-thymidine kinase with ganciclovir (ADV-TK/GCV) plus liver transplantation versus liver transplantation alone There is uncertainty about whether ADV-TK/GCV plus liver transplantation may benefit all-cause mortality at the two-year follow-up (RR 0.39, 95% CI 0.20 to 0.76; 1 trial, 45 participants; very low-certainty evidence). The trial did not report serious adverse events other than mortality or quality of life. Double-dose ADV-TK/GCV plus liver transplantation versus liver transplantation alone There is uncertainty about whether double-dose ADV-TK/GCV plus liver transplantation versus liver transplantation may benefit all-cause mortality at five-year follow-up (RR 0.40, 95% CI 0.22 to 0.73; 1 trial, 86 participants; low-certainty evidence). The trial did not report serious adverse events other than mortality or quality of life. Recombinant human adenovirus-p53 with hydroxycamptothecin (rAd-p53/HCT) versus hydroxycamptothecin alone There is uncertainty about whether there may be little to no difference between the effect of rAd-p53/HCT versus hydroxycamptothecin alone on the overall survival at 12-month follow-up (RR 3.06, 95% CI 0.16 to 60.47; 1 trial, 48 participants; very low-certainty evidence). The trial did not report serious adverse events or quality of life. rAd-p53/5-Fu (5-fluorouracil) plus transarterial chemoembolisation versus transarterial chemoembolisation alone The trial included 46 participants. We had insufficient data to assess overall survival. The trial did not report serious adverse events or quality of life. E1B-deleted (dl1520) adenovirus versus percutaneous ethanol injection The trial included 10 participants. It did not report data on overall survival, serious adverse events, or health-related quality of life. One trial did not provide any information on sponsorship; one trial received a national research grant, one trial by the Pedersen foundation, and three were industry-funded trials. We found five ongoing randomised clinical trials. AUTHORS' CONCLUSIONS The evidence is very uncertain about the effects of gene therapy on the studied outcomes because of high risk of bias and imprecision of outcome results. The trials were underpowered and lacked trial data on clinically important outcomes. There was only one trial per comparison, and we could not perform meta-analyses. Therefore, we do not know if gene therapy may reduce, increase, or have little to no effect on all-cause mortality or overall survival, or serious adverse events in adults with unresectable hepatocellular carcinoma. The impact of gene therapy on adverse events needs to be investigated further. Evidence on the effect of gene therapy on health-related quality of life is lacking.
Collapse
Affiliation(s)
- Cho Naing
- Division of Tropical Health and Medicine, James Cook University, Queensland, Australia
| | - Han Ni
- Department of Medicine, Newcastle University Medicine Malaysia, Johor, Malaysia
| | - Htar Htar Aung
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | | | - Dimitrinka Nikolova
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital ─ Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Sanguansin S, Kengkarn S, Klongnoi B, Chujan S, Roytrakul S, Kitkumthorn N. Exploring protein profiles and hub genes in ameloblastoma. Biomed Rep 2024; 20:64. [PMID: 38476605 PMCID: PMC10928474 DOI: 10.3892/br.2024.1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Ameloblastoma (AM) is a prominent benign odontogenic tumor characterized by aggressiveness, likely originating from tooth-generating tissue or the dental follicle (DF). However, proteomic distinctions between AM and DF remain unclear. In the present study, the aim was to identify the distinction between AM and DF in terms of their proteome and to determine the associated hub genes. Shotgun proteomics was used to compare the proteomes of seven fresh-frozen AM tissues and five DF tissues. Differentially expressed proteins (DEPs) were quantified and subsequently analyzed through Gene Ontology-based functional analysis, protein-protein interaction (PPI) analysis and hub gene identification. Among 7,550 DEPs, 520 and 216 were exclusive to AM and DF, respectively. Significant biological pathways included histone H2A monoubiquitination and actin filament-based movement in AM, as well as pro-B cell differentiation in DF. According to PPI analysis, the top-ranked upregulated hub genes were ubiquitin C (UBC), breast cancer gene 1 (BRCA1), lymphocyte cell-specific protein-tyrosine kinase (LCK), Janus kinase 1 and ATR serine/threonine kinase, whereas the top-ranked downregulated hub genes were UBC, protein kinase, DNA-activated, catalytic subunit (PRKDC), V-Myc avian myelocytomatosis viral oncogene homolog (MYC), tumor protein P53 and P21 (RAC1) activated kinase 1. When combining upregulated and downregulated genes, UBC exhibited the highest degree and betweenness values, followed by MYC, BRCA1, PRKDC, embryonic lethal, abnormal vision, Drosophila, homolog-like 1, myosin heavy chain 9, amyloid beta precursor protein, telomeric repeat binding factor 2, LCK and filamin A. In summary, these findings contributed to the knowledge on AM protein profiles, potentially aiding future research regarding AM etiopathogenesis and leading to AM prevention and treatment.
Collapse
Affiliation(s)
- Sirima Sanguansin
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Sudaporn Kengkarn
- Department of Hematology, Faculty of Medical Technology, Rangsit University, Muang Pathumthani 12000, Thailand
| | - Boworn Klongnoi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| | - Sittirak Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathumthani 12120, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Mukherjee N, Bhunia D, Garai PK, Mondal P, Barman S, Ghosh S. Designed novel nuclear localizing anticancer peptide targets p53 negative regulator MDM2 protein. J Pept Sci 2024; 30:e3535. [PMID: 37580909 DOI: 10.1002/psc.3535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Intracellular protein-protein interactions provide a major therapeutic target for the development of peptide-based anticancer therapeutic agents. MDM2 is the 491-residue protein encoded by the MDM2 oncogene. Being a ubiquitin-protein ligase, MDM2 represses the transcription ability of the tumor suppressor p53 by proteasome-mediated degradation. Under typical cellular circumstances, a sustained p53 expression level is maintained by negative regulation of MDM2, whereas under stress conditions, this is alleviated to increase the p53 level. Modulation of MDM2-p53 interaction via fabrication of an MDM2-interacting peptide could be a useful strategy to inhibit subsequent proteasomal degradation of p53 and initiation of p53 signaling leading to the initiation of p53-mediated apoptosis of tumor cells. Here, in this research work, a novel anticancer peptide mPNC-NLS targeting the nucleus and the MDM2 protein (p53 negative regulator) was designed to promote the p53 protein activity for the prevention of cancer. It induces effective apoptosis in both A549 and U87 cells and remains non-cytotoxic to normal lung fibroblast cells (WI38). Further, immunocytochemistry and Western blot results confirm that the designed mPNC-NLS peptide induces the apoptotic death of lung cancer cells via activation of p53 and p21 proteins and remarkably stifled the in vitro growth of 3D multicellular spheroids composed of A549 cells.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Debmalya Bhunia
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Prabir Kumar Garai
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Surajit Barman
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, West Bengal, India
| | - Surajit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| |
Collapse
|
7
|
Toncheva D, Marinova M, Borovska P, Serbezov D. Incidence of ancient variants associated with oncological diseases in modern populations. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2151376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Draga Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
- Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Marinova
- Department of Computer Systems and Technologies, Faculty of Electronics and Automation, Technical University of Sofia, Sofia, Bulgaria
| | - Plamenka Borovska
- Department of Informatics, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, Sofia, Bulgaria
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
Kornel A, Nadile M, Retsidou MI, Sakellakis M, Gioti K, Beloukas A, Sze NSK, Klentrou P, Tsiani E. Ursolic Acid against Prostate and Urogenital Cancers: A Review of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:ijms24087414. [PMID: 37108576 PMCID: PMC10138876 DOI: 10.3390/ijms24087414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer is the second most diagnosed form of cancer in men worldwide and accounted for roughly 1.3 million cases and 359,000 deaths globally in 2018, despite all the available treatment strategies including surgery, radiotherapy, and chemotherapy. Finding novel approaches to prevent and treat prostate and other urogenital cancers effectively is of major importance. Chemicals derived from plants, such as docetaxel and paclitaxel, have been used in cancer treatment, and in recent years, research interest has focused on finding other plant-derived chemicals that can be used in the fight against cancer. Ursolic acid, found in high concentrations in cranberries, is a pentacyclic triterpenoid compound demonstrated to have anti-inflammatory, antioxidant, and anticancer properties. In the present review, we summarize the research studies examining the effects of ursolic acid and its derivatives against prostate and other urogenital cancers. Collectively, the existing data indicate that ursolic acid inhibits human prostate, renal, bladder, and testicular cancer cell proliferation and induces apoptosis. A limited number of studies have shown significant reduction in tumor volume in animals xenografted with human prostate cancer cells and treated with ursolic acid. More animal studies and human clinical studies are required to examine the potential of ursolic acid to inhibit prostate and other urogenital cancers in vivo.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matteo Nadile
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Maria Ilektra Retsidou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minas Sakellakis
- Department of Medical Oncology, Metropolitan Hospital, 18547 Athens, Greece
| | - Katerina Gioti
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Newman Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
9
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
10
|
Suzuki K, Tange M, Yamagishi R, Hanada H, Mukai S, Sato T, Tanaka T, Akashi T, Kadomatsu K, Maeda T, Miida T, Takeuchi I, Murakami H, Sekido Y, Murakami-Tonami Y. SMG6 regulates DNA damage and cell survival in Hippo pathway kinase LATS2-inactivated malignant mesothelioma. Cell Death Dis 2022; 8:446. [PMID: 36335095 PMCID: PMC9637146 DOI: 10.1038/s41420-022-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Many genes responsible for Malignant mesothelioma (MM) have been identified as tumor suppressor genes and it is difficult to target these genes directly at a molecular level. We searched for the gene which showed synthetic lethal phenotype with LATS2, one of the MM causative genes and one of the kinases in the Hippo pathway. Here we showed that knockdown of SMG6 results in synthetic lethality in LATS2-inactivated cells. We found that this synthetic lethality required the nuclear translocation of YAP1 and TAZ. Both are downstream factors of the Hippo pathway. We also demonstrated that this synthetic lethality did not require SMG6 in nonsense-mediated mRNA decay (NMD) but in regulating telomerase reverse transcriptase (TERT) activity. In addition, the RNA-dependent DNA polymerase (RdDP) activity of TERT was required for this synthetic lethal phenotype. We confirmed the inhibitory effects of LATS2 and SMG6 on cell proliferation in vivo. The result suggests an interaction between the Hippo and TERT signaling pathways. We also propose that SMG6 and TERT are novel molecular target candidates for LATS2-inactivated cancers such as MM.
Collapse
Affiliation(s)
- Koya Suzuki
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Masaki Tange
- grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan
| | - Ryota Yamagishi
- grid.258799.80000 0004 0372 2033Department of Pathophysiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Hanada
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Satomi Mukai
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tatsuhiro Sato
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Tomohiro Akashi
- grid.27476.300000 0001 0943 978XDepartment of Integrative Cellular Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- grid.27476.300000 0001 0943 978XDepartment of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInstitute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tohru Maeda
- grid.411042.20000 0004 0371 5415College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takashi Miida
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ,grid.27476.300000 0001 0943 978XGraduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- grid.443595.a0000 0001 2323 0843Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yoshitaka Sekido
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDivision of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Murakami-Tonami
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
11
|
Dong K, Zhang W, Hu H, Cheng S, Mu Y, Yan B, Shu W, Li L, Wang H, Xiao X. A sensitive and specific nano-vehicle based on self-amplified dual-input synthetic gene circuit for intracellular imaging and treatment. Biosens Bioelectron 2022; 218:114746. [DOI: 10.1016/j.bios.2022.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
|
12
|
Barbosa-Silva A, Magalhães M, Da Silva GF, Da Silva FAB, Carneiro FRG, Carels N. A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers. Cancers (Basel) 2022; 14:2325. [PMID: 35565454 PMCID: PMC9103663 DOI: 10.3390/cancers14092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
The main hallmarks of cancer include sustaining proliferative signaling and resisting cell death. We analyzed the genes of the WNT pathway and seven cross-linked pathways that may explain the differences in aggressiveness among cancer types. We divided six cancer types (liver, lung, stomach, kidney, prostate, and thyroid) into classes of high (H) and low (L) aggressiveness considering the TCGA data, and their correlations between Shannon entropy and 5-year overall survival (OS). Then, we used principal component analysis (PCA), a random forest classifier (RFC), and protein-protein interactions (PPI) to find the genes that correlated with aggressiveness. Using PCA, we found GRB2, CTNNB1, SKP1, CSNK2A1, PRKDC, HDAC1, YWHAZ, YWHAB, and PSMD2. Except for PSMD2, the RFC analysis showed a different list, which was CAD, PSMD14, APH1A, PSMD2, SHC1, TMEFF2, PSMD11, H2AFZ, PSMB5, and NOTCH1. Both methods use different algorithmic approaches and have different purposes, which explains the discrepancy between the two gene lists. The key genes of aggressiveness found by PCA were those that maximized the separation of H and L classes according to its third component, which represented 19% of the total variance. By contrast, RFC classified whether the RNA-seq of a tumor sample was of the H or L type. Interestingly, PPIs showed that the genes of PCA and RFC lists were connected neighbors in the PPI signaling network of WNT and cross-linked pathways.
Collapse
Affiliation(s)
- Adriano Barbosa-Silva
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute for Artificial Intelligence, Medical University of Vienna, 1090 Vienna, Austria
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London E14NS, UK
- ITTM S.A.-Information Technology for Translational Medicine, Esch-sur-Alzette, 4354 Luxembourg, Luxembourg
| | - Milena Magalhães
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Gilberto Ferreira Da Silva
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Fabricio Alves Barbosa Da Silva
- Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Flávia Raquel Gonçalves Carneiro
- Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231050, Brazil
| | - Nicolas Carels
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| |
Collapse
|
13
|
Ismail MA, Sorio C, Al-Dewik N. Protein Tyrosine Phosphatase Receptor Gamma as Potential Therapeutic Target for Chronic Myeloid Leukemia Patients. Cancer Control 2022; 29:10732748221140201. [DOI: 10.1177/10732748221140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The worldwide CML incidence expects 100,000 patients every year thus representing a substantial health burden. A year 2000 is notable year, where Tyrosine kinase inhibitors (TKIs) had been introduced to the CML treatment plan. However, despite the dramatically reduce in mortality rate of CML patients due to TKIs, still over 25% of CML patients need to switch TKIs at least once during treatment timeline for many reasons. On the other hand, PTPRG behave as a tumor suppressor gene in different neoplasms and is strongly down-regulated in CML patients. We discussed briefly in series of articles the possible reasons of it is down regulation. Here, we discuss its role as potential therapeutic target in treatment plan.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, London, UK
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Nader Al-Dewik
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
- Faculty of Health and Social Care Sciences, Kingston University, St. George’s University of London, London, UK
| |
Collapse
|
14
|
Wnt signaling and Hedgehog expression in basal cell carcinoma. EUROPEAN JOURNAL OF PLASTIC SURGERY 2021. [DOI: 10.1007/s00238-021-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Tak E, Kim M, Cho Y, Choi S, Kim J, Han B, Kim HD, Jang CSH, Kim JE, Hong YS, Kim SY, Kim TW. Expression of neurofibromin 1 in colorectal cancer and cetuximab resistance. Oncol Rep 2021; 47:15. [PMID: 34779495 PMCID: PMC8611403 DOI: 10.3892/or.2021.8226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 11/05/2022] Open
Abstract
Neurofibromin 1 (NF1) is a tumor suppressor that has been previously reported to regulate RAS‑MAPK signaling. The present study investigated the possible relationship between NF1 expression and anti‑EGFR antibody (cetuximab) sensitivity in colorectal cancer cell lines. In addition, primary or metastatic colorectal cancer samples from patients treated with cetuximab were assessed for the association of cetuximab sensitivity. The quantities of the NF1 transcript, NF1‑related pathway enrichment and NF1 mutation profile were measured and investigated using RNA sequencing and targeted DNA sequencing. Based on growth inhibition and colony formation assay results, cell lines were designated to be cetuximab‑sensitive (NCI‑H508 and Caco2) or cetuximab‑resistant (KM12C and SM480). Western blotting revealed NF1 was highly expressed in cetuximab‑sensitive cell lines whilst there was little expression in their cetuximab‑resistant counterparts. Knocking down NF1 expression using small interfering RNA in the cetuximab‑sensitive cell lines enhanced the phosphorylation of MEK and ERK according to western blotting. NF1 knockdown also reduced apoptosis, as observed by the decreased number of apoptotic bodies by DAPI nuclear staining and reduced cleavage of caspase and poly‑(ADP ribose) polymerase. NF1 overexpression by transfection with GTPase‑activating protein‑related domain subunit rendered the cetuximab‑resistant cell lines, KM12C and SW480, more susceptible to cetuximab‑induced apoptosis. RNA sequencing of 111 RAS and BRAFV600 wild‑type tumor samples collected from cetuximab‑treated patients with metastatic colorectal cancer revealed that the pre‑treatment NF1 expression levels were not associated with the cetuximab response. However, tumor samples obtained after cetuximab treatment displayed slightly lower NF1 transcript levels compared with those in the pre‑treatment samples, suggesting that exposure to the anti‑EGFR antibody may be associated with reduced NF1 expression levels. Next‑generation sequencing revealed that the frequency of inactivating mutations in NF1 were rare (1.8%) in patients with colorectal cancer and were not associated with the protein expression levels of NF1 except for in a small number of cases (0.5%), where the biallelic inactivation of NF1 was observed. To conclude, the present study showed that modification of NF1 expression can affect sensitivity to cetuximab in colorectal cancer cell lines, though a limitation exists in terms of its potential application as a biomarker for RAS and BRAFV600 wild‑type tumors.
Collapse
Affiliation(s)
- Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Minhee Kim
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Youngra Cho
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Sueun Choi
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Jongro, Seoul 03080, Republic of Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Chloe Soo-Hyun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Jongro, Seoul 03080, Republic of Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa, Seoul 05505, Republic of Korea
| |
Collapse
|
16
|
Clarke LE, Cook A, Mathavarajah S, Bera A, Salsman J, Habib E, Van Iderstine C, Bydoun M, Lewis SM, Dellaire G. Haploinsufficient tumor suppressor PRP4K is negatively regulated during epithelial-to-mesenchymal transition. FASEB J 2021; 35:e22001. [PMID: 34674320 PMCID: PMC9298446 DOI: 10.1096/fj.202001063r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 01/28/2023]
Abstract
The pre‐mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial‐to‐mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non‐transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple‐negative breast cancer cells (MDA‐MB‐231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA‐MB‐231 and MCF10A cells and without changes in E‐cadherin. Induction of EMT in MCF10A cells, by treatment with WNT‐5a and TGF‐β1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT‐5a/TGF‐β1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.
Collapse
Affiliation(s)
- Livia E Clarke
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson Cook
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Amit Bera
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elias Habib
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Moamen Bydoun
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Kerachian MA, Azghandi M, Mozaffari-Jovin S, Thierry AR. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin Epigenetics 2021; 13:193. [PMID: 34663458 PMCID: PMC8525023 DOI: 10.1186/s13148-021-01182-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Rozario LT, Sharker T, Nila TA. In silico analysis of deleterious SNPs of human MTUS1 gene and their impacts on subsequent protein structure and function. PLoS One 2021; 16:e0252932. [PMID: 34125870 PMCID: PMC8202925 DOI: 10.1371/journal.pone.0252932] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial tumor suppressor 1 (MTUS1) gene acts as a crucial tumor suppressor by inhibiting growth and proliferation of eukaryotic cells including tumor cell lines. Down regulation of MTUS1 gene has been implicated in a wide range of cancers as well as various human diseases. Alteration through nsSNPs can potentially damage the structure and/or function of the protein. As characterization of functional SNPs in such disease linked genes is a major challenge, it is feasible to analyze putative functional SNPs prior to performing larger population studies. Hence, in this in silico study we differentiated the potentially harmful nsSNPs of the MTUS1 gene from the neutral ones by using various sequence and structure based bioinformatic tools. In a total of 215 nsSNPs, 9 were found to be most likely to exert deleterious effect using 7 prediction tools. From which, 5nsSNPs (S1259L, E960K, P503T, L1084V and L1143Q) were selected as potentially damaging due to their presence in the highly conserved region and ability to decrease protein stability. In fact, 2 nsSNPs (S1259L and E960K) among these 5 were found to be individually associated with two distinctive cancers named Stomach adenocarcinoma and Uterine corpus endometrial carcinoma. As this is the first comprehensive study analyzing the functional nsSNPs of MTUS1, the results of the current study would certainly be helpful in future prospects concerning large population-based studies as well as drug discovery, especially developing individualized medicine.
Collapse
Affiliation(s)
- Liza Teresa Rozario
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
- * E-mail:
| | - Tanima Sharker
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tasnin Akter Nila
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
19
|
Tang C, Mo X, Niu Q, Wahafu A, Yang X, Qui M, Ivanov AA, Du Y, Fu H. Hypomorph mutation-directed small-molecule protein-protein interaction inducers to restore mutant SMAD4-suppressed TGF-β signaling. Cell Chem Biol 2021; 28:636-647.e5. [PMID: 33326750 PMCID: PMC10053325 DOI: 10.1016/j.chembiol.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/05/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Tumor suppressor genes represent a major class of oncogenic drivers. However, direct targeting of loss-of-function tumor suppressors remains challenging. To address this gap, we explored a variant-directed chemical biology approach to reverse the lost function of tumor suppressors using SMAD4 as an example. SMAD4, a central mediator of the TGF-β pathway, is recurrently mutated in many tumors. Here, we report the development of a TR-FRET technology that recapitulated the dynamic differential interaction of SMAD4 and SMAD4R361H with SMAD3 and identified Ro-31-8220, a bisindolylmaleimide derivative, as a SMAD4R361H/SMAD3 interaction inducer. Ro-31-8220 reactivated the dormant SMAD4R361H-mediated transcriptional activity and restored TGF-β-induced tumor suppression activity in SMAD4 mutant cancer cells. Thus, demonstration of Ro-31-8220 as a SMAD4R361H/SMAD3 interaction inducer illustrates a general strategy to reverse the lost function of tumor suppressors with hypomorph mutations and supports a systematic approach to develop small-molecule protein-protein interaction (PPI) molecular glues for biological insights and therapeutic discovery.
Collapse
Affiliation(s)
- Cong Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R.China
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alafate Wahafu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R.China
| | - Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
A synthetically lethal nanomedicine delivering novel inhibitors of polynucleotide kinase 3'-phosphatase (PNKP) for targeted therapy of PTEN-deficient colorectal cancer. J Control Release 2021; 334:335-352. [PMID: 33933518 DOI: 10.1016/j.jconrel.2021.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Abstract
Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.
Collapse
|
21
|
Pires JG, da Silva GF, Weyssow T, Conforte AJ, Pagnoncelli D, da Silva FAB, Carels N. Galaxy and MEAN Stack to Create a User-Friendly Workflow for the Rational Optimization of Cancer Chemotherapy. Front Genet 2021; 12:624259. [PMID: 33679888 PMCID: PMC7935533 DOI: 10.3389/fgene.2021.624259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
One aspect of personalized medicine is aiming at identifying specific targets for therapy considering the gene expression profile of each patient individually. The real-world implementation of this approach is better achieved by user-friendly bioinformatics systems for healthcare professionals. In this report, we present an online platform that endows users with an interface designed using MEAN stack supported by a Galaxy pipeline. This pipeline targets connection hubs in the subnetworks formed by the interactions between the proteins of genes that are up-regulated in tumors. This strategy has been proved to be suitable for the inhibition of tumor growth and metastasis in vitro. Therefore, Perl and Python scripts were enclosed in Galaxy for translating RNA-seq data into protein targets suitable for the chemotherapy of solid tumors. Consequently, we validated the process of target diagnosis by (i) reference to subnetwork entropy, (ii) the critical value of density probability of differential gene expression, and (iii) the inhibition of the most relevant targets according to TCGA and GDC data. Finally, the most relevant targets identified by the pipeline are stored in MongoDB and can be accessed through the aforementioned internet portal designed to be compatible with mobile or small devices through Angular libraries.
Collapse
Affiliation(s)
- Jorge Guerra Pires
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gilberto Ferreira da Silva
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thomas Weyssow
- Informatic Department, Free University of Brussels (ULB), Brussels, Belgium
| | - Alessandra Jordano Conforte
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Fabricio Alves Barbosa da Silva
- Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, FIOCRUZ, Rio de Janeiro, Brazil
| | - Nicolas Carels
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
|
23
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Goss KL, Koppenhafer SL, Waters T, Terry WW, Wen KK, Wu M, Ostergaard J, Gordon PM, Gordon DJ. The translational repressor 4E-BP1 regulates RRM2 levels and functions as a tumor suppressor in Ewing sarcoma tumors. Oncogene 2020; 40:564-577. [PMID: 33191406 PMCID: PMC7856031 DOI: 10.1038/s41388-020-01552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Ribonucleotide reductase (RNR), which is a heterodimeric tetramer composed of RRM1 and RRM2 subunits, is the rate-limiting enzyme in the synthesis of deoxyribonucleoside triphosphates (dNTPs) and essential for both DNA replication and the repair of DNA damage. The activity of RNR is coordinated with the cell cycle and regulated by fluctuations in the level of the RRM2 subunit. Multiple cancer types, including Ewing sarcoma tumors, are sensitive to inhibitors of RNR or a reduction in the levels of either the RRM1 or RRM2 subunits of RNR. Here, we show that the expression of the RRM2 protein is dependent on active protein synthesis and that 4E-BP1, a repressor of cap-dependent protein translation, specifically regulates the level of the RRM2 protein. Furthermore, inhibition of mTORC1/2, but not mTORC1, activates 4E-BP1, inhibits protein synthesis, and reduces the level of the RRM2 protein in multiple sarcoma cell lines. This effect of mTORC1/2 inhibitors on protein synthesis and RRM2 levels was rescued in cell lines with the CRISPR/Cas9-mediated knockout of 4E-BP1. In addition, the inducible expression of a mutant 4E-BP1 protein that cannot be phosphorylated by mTOR blocked protein synthesis and inhibited the growth of Ewing sarcoma cells in vitro and in vivo in a xenograft. Overall, these results provide insight into the multifaceted regulation of RRM2 protein levels and identify a regulatory link between protein translation and DNA replication.
Collapse
Affiliation(s)
- Kelli L Goss
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Stacia L Koppenhafer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Torin Waters
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - William W Terry
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Jason Ostergaard
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter M Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
25
|
Liu Y, Huang W, Cai Z. Synthesizing AND gate minigene circuits based on CRISPReader for identification of bladder cancer cells. Nat Commun 2020; 11:5486. [PMID: 33127914 PMCID: PMC7599332 DOI: 10.1038/s41467-020-19314-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
The logical AND gate gene circuit based on the CRISPR-Cas9 system can distinguish bladder cancer cells from normal bladder epithelial cells. However, the layered artificial gene circuits have the problems of high complexity, difficulty in accurately predicting the behavior, and excessive redundancy, which cannot be applied to clinical translation. Here, we construct minigene circuits based on the CRISPReader, a technology used to control promoter-less gene expression in a robust manner. The minigene circuits significantly induce robust gene expression output in bladder cancer cells, but have nearly undetectable gene expression in normal bladder epithelial cells. The minigene circuits show a higher capability for cancer identification and intervention when compared with traditional gene circuits, and could be used for in vivo cancer gene therapy using the all-in-one AAV vector. This approach expands the design ideas and concepts of gene circuits in medical synthetic biology.
Collapse
Affiliation(s)
- Yuchen Liu
- National and Local Joint Engineering Laboratory of Medical Synthetic Biology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China. .,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China. .,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China.
| | - Weiren Huang
- National and Local Joint Engineering Laboratory of Medical Synthetic Biology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China
| | - Zhiming Cai
- National and Local Joint Engineering Laboratory of Medical Synthetic Biology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China
| |
Collapse
|
26
|
Majolo F, Caye B, Stoll SN, Leipelt J, Abujamra AL, Goettert MI. Prevention and Therapy of Prostate Cancer: An Update on Alternatives for Treatment and Future Perspectives. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190917150635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer is one of the most prevalent cancer types in men worldwide. With the
progression of the disease to independent stimulation by androgen hormones, it becomes more difficult
to control its progress. In addition, several studies have shown that chronic inflammation is
directly related to the onset and progression of this cancer. For many decades, conventional chemotherapeutic
drugs have not made significant progress in the treatment of prostate cancer. However,
the discovery of docetaxel yielded the first satisfactory responses of increased survival of
patients. In addition, alternative therapies using biomolecules derived from secondary metabolites
of natural products are promising in the search for new treatments. Despite the advances in the
treatment of this disease in the last two decades, the results are still insufficient and conventional
therapies do not present the expected results they once promised. Thus, a revision and
(re)establishment of prostate cancer therapeutic strategies are necessary. In this review, we also
approach suggested treatments for molecular biomarkers in advanced prostate cancer.
Collapse
Affiliation(s)
- Fernanda Majolo
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruna Caye
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Stefani Natali Stoll
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Juliano Leipelt
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Ana Lúcia Abujamra
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| |
Collapse
|
27
|
Rosemary (Rosmarinus officinalis L.) extract inhibits prostate cancer cell proliferation and survival by targeting Akt and mTOR. Biomed Pharmacother 2020; 131:110717. [PMID: 33152908 DOI: 10.1016/j.biopha.2020.110717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed type of cancer in North American men and is typically classified as either androgen receptor positive or negative depending on the expression of the androgen receptor (AR). AR positive prostate cancer can be treated with hormone therapy while AR negative prostate cancer is aggressive and does not respond to hormone therapy. It has been previously reported that rosemary extract (RE) has antioxidant, anti-inflammatory and anti-cancer properties. In the present study, we found that treatment of the androgen-insensitive PC-3 prostate cancer cells with RE resulted in a significant inhibition of proliferation, survival, migration, Akt, and mTOR signaling. In addition, treatment of the androgen-sensitive 22RV1 prostate cancer cells with RE resulted in a significant inhibition of proliferation and survival while RE had no effect on normal prostate epithelial PNT1A cells. These findings suggest that RE has potent effects against prostate cancer and warrants further investigation.
Collapse
|
28
|
Elliott E, Speare V, Coggan J, Espenschied C, LaDuca H, Yussuf AF, Burgess K, Gray P, Cobleigh M, Rao R, Patel J, Kuzel T, Buckingham LE, Usha L. Paired tumor sequencing and germline testing in breast cancer management: An experience of a single academic center. Cancer Rep (Hoboken) 2020; 3:e1287. [PMID: 32881420 PMCID: PMC7941483 DOI: 10.1002/cnr2.1287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic testing for cancer predisposition is recommended to women with breast cancer who meet the criteria for such testing. After the FDA approvals of the poly ADP ribose polymerase (PARP) inhibitors, olaparib and talazoparib, for treatment of metastatic breast cancer, carrying germline mutations in BRCA1 and BRCA2 genes, the genetic testing result has become critical in their care. With the recent FDA approval of alpelisib for the treatment of PIK3CA-mutated hormone-receptor positive metastatic breast cancer, tumor molecular profiling to identify somatic mutations and potential molecularly targeted agents is increasingly utilized in the treatment of advanced breast cancer. AIM Combining germline and somatic sequencing (paired testing) offers an advantage over a single technique approach. Our study evaluates the role of paired testing on the management of breast cancer patients. METHODS AND RESULTS Forty-three breast cancer patients treated at Rush University Medical Center underwent paired germline and somatic variant testing in 2015 to 2017. A retrospective chart review was conducted with the analysis of demographic, clinical, and genomic data. Three actionable germline variants were found in the CHEK2 (2) and ATM (1) genes. 95% of tumors had somatic mutations. Seventy-seven percent of tumors had genomic alterations targetable with agents approved for breast cancer and 88% had molecular targets for agents approved for other cancers. Clinical examples of such use are described and potential future directions of tumor and paired testing are discussed. CONCLUSIONS Germline variants were present in a relatively small patient group not routinely tested for inherited alterations. Potentially targetable somatic alterations were identified in the majority of breast cancers. Paired testing is a feasible and efficient approach that delivers valuable information for the care of breast cancer patients and eliminates serial testing.
Collapse
Affiliation(s)
- Elizabeth Elliott
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | - James Coggan
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | - Kelly Burgess
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | - Melody Cobleigh
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ruta Rao
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jeremy Patel
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Timothy Kuzel
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lela E Buckingham
- Department of Pathology, Rush University Medical Center, Chicago, IL
| | - Lydia Usha
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
Sun Y, Wang Q, Zhang Y, Geng M, Wei Y, Liu Y, Liu S, Petersen RB, Yue J, Huang K, Zheng L. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J Hepatol 2020; 73:603-615. [PMID: 32593682 DOI: 10.1016/j.jhep.2020.03.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Obesity is an independent risk factor for malignancies, including hepatocellular carcinoma (HCC). However, it remains unknown whether maternal obesity affects the incidence of HCC in offspring. Thus, we aimed to investigate this association and its underlying mechanisms. METHODS Diethylnitrosamine (DEN) was used to induce HCC in a high-fat diet (HFD)-induced multigenerational obesity model. RNA-sequencing was performed to identify the genes and microRNAs (miRNAs) that were altered over generations. The role of the miR-27a-3p-Acsl1/Aldh2 axis in HCC was evaluated in cell lines and HCC-bearing nude mice, and its intergenerational impact was studied in pregnant mice and their offspring. RESULTS Under HFD stress, maternal obesity caused susceptibility of offspring to DEN-induced HCC, and such susceptibility was cumulative over generations. We identified that Acsl1 and Aldh2, direct targets of miR-27a-3p, were gradually changed over generations. Under hyperlipidemic conditions, downregulation of Acsl1 and Aldh2 increased cell proliferation (in vitro) or tumor growth (in vivo) in synergy. Intratumor injection of an miR-27a-3p agomir exacerbated tumor growth by downregulating Acsl1 and Aldh2; while intratumor injection of an miR-27a-3p antagomir had the opposite effect. Moreover, serum miR-27a-3p levels gradually increased in the HFD-fed maternal lineage over generations. Injecting pregnant mice with an miR-27a-3p agomir not only upregulated hepatic miR-27a-3p and downregulated Acsl1/Aldh2 in offspring (fetus, young and adult stages), but also exacerbated HCC development in DEN-treated offspring. In human HCC, upregulated miR-27a-3p and downregulated Acsl1/Aldh2 were negatively correlated with survival on TCGA analysis; while, hepatic miR-27a-3p was negatively correlated with Acsl1/Aldh2 expression in tumor/non-tumor tissues from fatty/non-fatty livers. CONCLUSIONS Maternal obesity plays a role in regulating cumulative susceptibility to HCC development in offspring over multiple generations through the miR-27a-3p-Acsl1/Aldh2 axis. LAY SUMMARY It is not currently known how maternal obesity affects the incidence of liver cancer in offspring. In this study, we identified a microRNA (miR-27a-3p) that was upregulated in obese mothers and could be passed on to their offspring. This microRNA enhanced the risk of liver cancer in offspring by regulating 2 genes (Acsl1 and Aldh2). This mechanism could be a future therapeutic target.
Collapse
Affiliation(s)
- Yu Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Mengyuan Geng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Yanrui Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Shanshan Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA, 48858
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China, 430072.
| |
Collapse
|
30
|
Tang W, Gao H, Li J, Wang X, Zhou Z, Gai L, Feng XJ, Tian J, Lu H, Guo Z. A General Strategy for the Construction of NIR-emitting Si-rhodamines and Their Application for Mitochondrial Temperature Visualization. Chem Asian J 2020; 15:2724-2730. [PMID: 32666700 DOI: 10.1002/asia.202000660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Indexed: 11/07/2022]
Abstract
Si-rhodamine (SiR) is an ideal fluorophore because it possesses bright emission in the NIR region and can be implemented flexibly in living cells. Currently, several promising approaches for synthesizing SiR are being developed. However, challenges remain in the construction of SiR containing functional groups for bioimaging application. Herein, we introduce a general and simple approach by a condensation reaction of diarylsilylether and arylaldehyde in o-dichlorobenzene to synthesize a series of SiRs bearing various functional substituents. These SiRs have moderate to high quantum efficiency, tolerance to photobleaching, and high water solubility as well as NIR emitting, and their NIR fluorescence properties can be controlled through the photoinduced electron transfer (PET) mechanism. Fluorescence OFF-ON switching effect is observed for SiR 9 in the presence of acid, which is rationalized by DFT/TDDFT calculations. Moreover, reversible stimuli response toward temperature is achieved. Since positive charge enables mitochondrial targeting ability and chloromethyl unit can covalently immobilize the dyes onto the mitochondrial via click reaction between the benzyl choride and protein sulfhydryls, SiR 8 is identified as a valuable fluorescent marker to visualize the morphology and monitor the temperature change of mitochondria with high photostability.
Collapse
Affiliation(s)
- Weiguo Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Han Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jiaxin Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xianhui Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xin Jiang Feng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
31
|
Norollahi SE, Hamidian SMT, Vahidi S, Babaei K, Samadani AA. Modifications of WNT signaling pathway genes including WNT1, KLF5 and WNT16 in colorectal cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Noorani I, de la Rosa J, Choi YH, Strong A, Ponstingl H, Vijayabaskar MS, Lee J, Lee E, Richard-Londt A, Friedrich M, Furlanetto F, Fuente R, Banerjee R, Yang F, Law F, Watts C, Rad R, Vassiliou G, Kim JK, Santarius T, Brandner S, Bradley A. PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biol 2020; 21:181. [PMID: 32727536 PMCID: PMC7392733 DOI: 10.1186/s13059-020-02092-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. Results We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. Conclusion Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
Collapse
Affiliation(s)
- Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. .,Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yoon Ha Choi
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M S Vijayabaskar
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jusung Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Angela Richard-Londt
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Federica Furlanetto
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rocio Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Frances Law
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Colin Watts
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.,Birmingham Brain Cancer Program, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Rad
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
33
|
González-Reymúndez A, Vázquez AI. Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin. Sci Rep 2020; 10:8341. [PMID: 32433524 PMCID: PMC7239905 DOI: 10.1038/s41598-020-65119-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in treatment, cancer continues to be one of the most lethal human maladies. One of the challenges of cancer treatment is the diversity among similar tumors that exhibit different clinical outcomes. Most of this variability comes from wide-spread molecular alterations that can be summarized by omic integration. Here, we have identified eight novel tumor groups (C1-8) via omic integration, characterized by unique cancer signatures and clinical characteristics. C3 had the best clinical outcomes, while C2 and C5 had poorest. C1, C7, and C8 were upregulated for cellular and mitochondrial translation, and relatively low proliferation. C6 and C4 were also downregulated for cellular and mitochondrial translation, and had high proliferation rates. C4 was represented by copy losses on chromosome 6, and had the highest number of metastatic samples. C8 was characterized by copy losses on chromosome 11, having also the lowest lymphocytic infiltration rate. C6 had the lowest natural killer infiltration rate and was represented by copy gains of genes in chromosome 11. C7 was represented by copy gains on chromosome 6, and had the highest upregulation in mitochondrial translation. We believe that, since molecularly alike tumors could respond similarly to treatment, our results could inform therapeutic action.
Collapse
Affiliation(s)
- Agustín González-Reymúndez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
| | - Ana I Vázquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
34
|
Miller DB, Piccolo SR. Compound Heterozygous Variants in Pediatric Cancers: A Systematic Review. Front Genet 2020; 11:493. [PMID: 32508881 PMCID: PMC7249936 DOI: 10.3389/fgene.2020.00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
A compound heterozygous (CH) variant is a type of germline variant that occurs when each parent donates one alternate allele and these alleles are located at different loci within the same gene. Pathogenic germline variants have been identified for some pediatric cancer types but in most studies, CH variants are overlooked. Thus, the prevalence of pathogenic CH variants in most pediatric cancer types is unknown. We identified 26 studies (published between 1999 and 2019) that identified a CH variant in at least one pediatric cancer patient. These studies encompass 21 cancer types and have collectively identified 25 different genes in which a CH variant occurred. However, the sequencing methods used and the number of patients and genes evaluated in each study were highly variable across the studies. In addition, methods for assessing pathogenicity of CH variants varied widely and were often not reported. In this review, we discuss technologies and methods for identifying CH variants, provide an overview of studies that have identified CH variants in pediatric cancer patients, provide insights into future directions in the field, and give a summary of publicly available pediatric cancer sequencing data. Although considerable insights have been gained over the last 20 years, much has yet to be learned about the involvement of CH variants in pediatric cancers. In future studies, larger sample sizes, more pediatric cancer types, and better pathogenicity assessment and filtering methods will be needed to move this field forward.
Collapse
Affiliation(s)
- Dustin B Miller
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
35
|
Rehman AU, Olof Olsson P, Khan N, Khan K. Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics. J Membr Biol 2020; 253:257-270. [PMID: 32415382 DOI: 10.1007/s00232-020-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022]
Abstract
Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Adeel Ur Rehman
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | | | - Naveed Khan
- Max Plank Partner Institute of Computational Biology, Shanghai Institute of Biological Sciences, Shanghai, 200032, China
| | - Khalid Khan
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
37
|
Mitrea C, Wijesinghe P, Dyson G, Kruger A, Ruden DM, Draghici S, Bollig-Fischer A. Integrating 5hmC and gene expression data to infer regulatory mechanisms. Bioinformatics 2019; 34:1441-1447. [PMID: 29220513 DOI: 10.1093/bioinformatics/btx777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
Motivation Epigenetic mechanisms are known to play a major role in breast cancer. However, the role of 5-hydroxymethylcytosine (5hmC) remains understudied. We hypothesize that 5hmC mediates redox regulation of gene expression in an aggressive subtype known as triple negative breast cancer (TNBC). To address this, our objective was to highlight genes that may be the target of this process by identifying redox-regulated, antioxidant-sensitive, gene-localized 5hmC changes associated with mRNA changes in TNBC cells. Results We proceeded to develop an approach to integrate novel Pvu-sequencing and RNA-sequencing data. The result of our approach to merge genome-wide, high-throughput TNBC cell line datasets to identify significant, concordant 5hmC and mRNA changes in response to antioxidant treatment produced a gene set with relevance to cancer stem cell function. Moreover, we have established a method that will be useful for continued research of 5hmC in TNBC cells and tissue samples. Availability and implementation Data are available at Gene Expression Omnibus (GEO) under accession number GSE103850. Contact bollig@karmanos.org.
Collapse
Affiliation(s)
| | | | - Greg Dyson
- Department of Oncology.,Barbara Ann Karmanos Cancer Institute
| | | | - Douglas M Ruden
- Department of Obstetrics and Gynecology.,Department of Pharmacology.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science.,Department of Obstetrics and Gynecology
| | | |
Collapse
|
38
|
Robinson JL, Feizi A, Uhlén M, Nielsen J. A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome. Cell Rep 2019; 26:2622-2635.e5. [PMID: 30840886 PMCID: PMC6441842 DOI: 10.1016/j.celrep.2019.02.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The collection of proteins secreted from a cell-the secretome-is of particular interest in cancer pathophysiology due to its diagnostic potential and role in tumorigenesis. However, cancer secretome studies are often limited to one tissue or cancer type or focus on biomarker prediction without exploring the associated functions. We therefore conducted a pan-cancer analysis of secretome gene expression changes to identify candidate diagnostic biomarkers and to investigate the underlying biological function of these changes. Using transcriptomic data spanning 32 cancer types and 30 healthy tissues, we quantified the relative diagnostic potential of secretome proteins for each cancer. Furthermore, we offer a potential mechanism by which cancer cells relieve secretory pathway stress by decreasing the expression of tissue-specific genes, thereby facilitating the secretion of proteins promoting invasion and proliferation. These results provide a more systematic understanding of the cancer secretome, facilitating its use in diagnostics and its targeting for therapeutic development.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
39
|
Ahmadzada T, Lee K, Clarke C, Cooper WA, Linton A, McCaughan B, Asher R, Clarke S, Reid G, Kao S. High BIN1 expression has a favorable prognosis in malignant pleural mesothelioma and is associated with tumor infiltrating lymphocytes. Lung Cancer 2019; 130:35-41. [PMID: 30885349 DOI: 10.1016/j.lungcan.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVES A number of key immune regulators show prognostic value in malignant pleural mesothelioma (MPM), but the association between Bridging integrator 1 (BIN1), indoleamine 2,3 dioxygenase 1 (IDO1) and patient outcome has not been investigated. We aimed to determine the expression of BIN1 and IDO1, their association with other markers and impact on overall survival (OS) in MPM. MATERIALS AND METHODS The expression of BIN1, IDO1, CD3, CD20 and CD68 were evaluated by immunohistochemistry in 67 patients who underwent pleurectomy/decortication. Survival analyses were performed using the Kaplan Meier method and significant biomarkers were entered into a Cox Regression multivariate model, accounting for known prognostic factors such as age, gender, histological subtype, PD-L1 expression and neutrophil-to-lymphocyte ratio. RESULTS Immune markers were variably expressed in tumor cells, ranging from 0% to 100% for BIN1 (median: 89%), and 0% to 77.5% for IDO1 (median: 0%). Expression of markers of tumor-infiltrating lymphocytes (TILs) and macrophages ranged from 0% to more than 50%. BIN1 expression was high in 35 patients (51%) and was associated with increased OS (median: 12 vs 6 months for high and low BIN1 respectively,p = 0.03). Multivariate analysis showed BIN1 remained an independent prognostic indicator (HR 0.39; 95% CI: 0.18-0.82, p = 0.01). The majority of patients had immune inflamed tumors (77%) and there was a significant association between TILs and BIN1 (p = 0 < 0.01), PD-L1 (p=0.04) and CD68+ macrophages in the tumor (p < 0.01). There were no significant associations between PD-L1 and BIN1 or IDO1. CONCLUSION High BIN1 expression is a favorable prognostic biomarker and is associated with TILs in MPM.
Collapse
Affiliation(s)
| | - Kenneth Lee
- Sydney Medical School, The University of Sydney, Australia; Department of Anatomical Pathology, Concord Repatriation General Hospital, Australia
| | - Candice Clarke
- Department of Anatomical Pathology, Concord Repatriation General Hospital, Australia
| | - Wendy A Cooper
- Sydney Medical School, The University of Sydney, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Anthony Linton
- Sydney Medical School, The University of Sydney, Australia; Department of Medical Oncology, Concord Repatriation General Hospital, Australia
| | | | - Rebecca Asher
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Stephen Clarke
- Sydney Medical School, The University of Sydney, Australia; Department of Medical Oncology, Royal North Shore Hospital, Australia
| | - Glen Reid
- Sydney Medical School, The University of Sydney, Australia; Asbestos Diseases Research Institute, Sydney, NSW, Australia; Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Steven Kao
- Sydney Medical School, The University of Sydney, Australia; Asbestos Diseases Research Institute, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| |
Collapse
|
40
|
Contreras L, Calderon RI, Varela-Ramirez A, Zhang HY, Quan Y, Das U, Dimmock JR, Skouta R, Aguilera RJ. Induction of apoptosis via proteasome inhibition in leukemia/lymphoma cells by two potent piperidones. Cell Oncol (Dordr) 2018; 41:623-636. [PMID: 30088262 PMCID: PMC6241245 DOI: 10.1007/s13402-018-0397-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Previously, compounds containing a piperidone structure have been shown to be highly cytotoxic to cancer cells. Recently, we found that the piperidone compound P2 exhibits a potent anti-neoplastic activity against human breast cancer-derived cells. Here, we aimed to evaluate two piperidone compounds, P1 and P2, for their potential anti-neoplastic activity against human leukemia/lymphoma-derived cells. METHODS Cytotoxicity and apoptosis induction were evaluated using MTS, annexin V-FITC/PI and mitochondrial membrane potential polychromatic assays to confirm the mode of action of the piperidone compounds. The effects of compound P1 and P2 treatment on gene expression were assessed using AmpliSeq analysis and, subsequently, confirmed by RT-qPCR and Western blotting. RESULTS We found that the two related piperidone compounds P1 and P2 selectively killed the leukemia/lymphoma cells tested at nanomolar concentrations through induction of the intrinsic apoptotic pathway, as demonstrated by mitochondrial depolarization and caspase-3 activation. AmpliSeq-based transcriptome analyses of the effects of compounds P1 and P2 on HL-60 acute leukemia cells revealed a differential expression of hundreds of genes, 358 of which were found to be affected by both. Additional pathway analyses revealed that a significant number of the common genes were related to the unfolded protein response, implying a possible role of the two compounds in the induction of proteotoxic stress. Subsequent analyses of the transcriptome data revealed that P1 and P2 induced similar gene expression alterations as other well-known proteasome inhibitors. Finally, we found that Noxa, an important mediator of the activity of proteasome inhibitors, was significantly upregulated at both the mRNA and protein levels, indicating a possible role in the cytotoxic mechanism induced by P1 and P2. CONCLUSIONS Our data indicate that the cytotoxic activity of P1 and P2 on leukemia/lymphoma cells is mediated by proteasome inhibition, leading to activation of pro-apoptotic pathways.
Collapse
Affiliation(s)
- Lisett Contreras
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Ruben I Calderon
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Umashankar Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Jonathan R Dimmock
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Rachid Skouta
- Department of Chemistry, Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
- Department of Biology, University of Massachusetts, Amherst, MA, 01003-9297, USA
| | - Renato J Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| |
Collapse
|
41
|
Islam MA, Xu Y, Tao W, Ubellacker JM, Lim M, Aum D, Lee GY, Zhou K, Zope H, Yu M, Cao W, Oswald JT, Dinarvand M, Mahmoudi M, Langer R, Kantoff PW, Farokhzad OC, Zetter BR, Shi J. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat Biomed Eng 2018; 2:850-864. [PMID: 31015614 PMCID: PMC6486184 DOI: 10.1038/s41551-018-0284-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/30/2018] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a well-characterized tumour-suppressor gene that is lost or mutated in about half of metastatic castration-resistant prostate cancers and in many other human cancers. The restoration of functional PTEN as a treatment for prostate cancer has, however, proven difficult. Here, we show that PTEN messenger RNA (mRNA) can be reintroduced into PTEN-null prostate cancer cells in vitro and in vivo via its encapsulation in polymer-lipid hybrid nanoparticles coated with a polyethylene glycol shell. The nanoparticles are stable in serum, elicit low toxicity and enable high PTEN mRNA transfection in prostate cancer cells. Moreover, significant inhibition of tumour growth is achieved when delivered systemically in multiple mouse models of prostate cancer. We also show that the restoration of PTEN function in PTEN-null prostate cancer cells inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT pathway and enhances apoptosis. Our findings provide proof-of-principle evidence of the restoration of mRNA-based tumour suppression in vivo.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Oncology Division, Immunomic Therapeutics, Inc., Rockville, MD, USA
| | - Yingjie Xu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Hematology Division, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Lim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Aum
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Zhou
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harshal Zope
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wuji Cao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - James Trevor Oswald
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - Meshkat Dinarvand
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Bruce R Zetter
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Ye M, He Z, Dai W, Li Z, Chen X, Liu J. A TOP2A-derived cancer panel drives cancer progression in papillary renal cell carcinoma. Oncol Lett 2018; 16:4169-4178. [PMID: 30214555 PMCID: PMC6126182 DOI: 10.3892/ol.2018.9179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the function of the DNA topoisomerase IIα (TOP2A) gene and its associated genes in the progression of papillary renal cell carcinoma (PRCC). Online cancer databases, including cBioportal, Oncomine, OncoLnc and Search Tool for the Retrieval of Interacting Genes/Proteins were used to analyze the TOP2A gene expression profile, function and regulation network in PRCC. The genes that were significantly co-expressed or mutually exclusively expressed with TOP2A were identified. The genes co-expressed with TOP2A were defined as a 'TOP2A-cancer panel', which cooperatively promotes PRCC progression. This gene panel performed well in predicting the prognosis of PRCC. In addition, the TOP2A-cancer panel significantly affected the outcome of PRCC compared with clear cell renal cell carcinoma (CCRCC). The protein-protein interaction network of all genes associated with TOP2A was also generated. This interaction network may provide foundation for the additional investigation of TOP2A. Integrative understating of the TOP2A-cancer panel may result in a novel avenue for treatment intervention in PRCC.
Collapse
Affiliation(s)
- Mushi Ye
- Department of Urological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhuobin He
- Department of Urological Surgery, Da Lang Hospital of Dongguan, Dongguan, Guangdong 523770, P.R. China
| | - Wei Dai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhuo Li
- Department of Urological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaojun Chen
- Department of Urological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianjun Liu
- Department of Urological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
43
|
Sen K, Bhattacharyya D, Sarkar A, Das J, Maji N, Basu M, Ghosh Z, Ghosh TC. Exploring the major cross-talking edges of competitive endogenous RNA networks in human Chronic and Acute Myeloid Leukemia. Biochim Biophys Acta Gen Subj 2018; 1862:1883-1892. [DOI: 10.1016/j.bbagen.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
|
44
|
Lusche DF, Buchele EC, Russell KB, Soll BA, Vitolo MI, Klemme MR, Wessels DJ, Soll DR. Overexpressing TPTE2 ( TPIP), a homolog of the human tumor suppressor gene PTEN, rescues the abnormal phenotype of the PTEN-/- mutant. Oncotarget 2018; 9:21100-21121. [PMID: 29765523 PMCID: PMC5940379 DOI: 10.18632/oncotarget.24941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
One possible approach to normalize mutant cells that are metastatic and tumorigenic, is to upregulate a functionally similar homolog of the mutated gene. Here we have explored this hypothesis by generating an overexpressor of TPTE2 (TPIP), a homolog of PTEN, in PTEN-/- mutants, the latter generated by targeted mutagenesis of a human epithelial cell line. Overexpression of TPTE2 normalized phenotypic changes associated with the PTEN mutation. The PTEN-/- -associated changes rescued by overexpressing TPTE2 included 1) accelerated wound healing in the presence or absence of added growth factors (GFs), 2) increased division rates on a 2D substrate in the presence of GFs, 3) adhesion and viability on a 2D substrate in the absence of GFs, 4) viability in a 3D Matrigel model in the absence of GFs and substrate adhesion 5) loss of apoptosis-associated annexin V cell surface binding sites. The results justify further exploration into the possibility that upregulating TPTE2 by a drug may reverse metastatic and tumorigenic phenotypes mediated in part by a mutation in PTEN. This strategy may also be applicable to other tumorigenic mutations in which a homolog to the mutated gene is present and can substitute functionally.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Emma C. Buchele
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Kanoe B. Russell
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Benjamin A. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Michele I. Vitolo
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland, Baltimore, 21201 MD, USA
| | - Michael R. Klemme
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - David R. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| |
Collapse
|
45
|
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14:565-576. [PMID: 29805308 PMCID: PMC5968849 DOI: 10.7150/ijbs.24562] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that infects over 90% of the world's adult population. EBV can establish life-long latent infection in host due to the balance between EBV and host immune system. EBV latency is associated with various malignancies such as nasopharyngeal carcinoma, gastric carcinoma and Burkitt's lymphoma. EBV is the first human virus that has the capability to encode microRNAs (miRNAs). Remarkably, EBV-encoded miRNAs are abundantly expressed in latently-infected cells and serve important function in viral infection and pathogenesis. Increasing evidence indicates that EBV miRNAs target the host mRNAs involved in cell proliferation, apoptosis and transformation. EBV miRNAs also inhibit the expression of viral antigens, thereby enabling infected cells to escape immune recognition. Intriguingly, EBV miRNAs directly suppress host antiviral immunity by interfering with antigen presentation and immune cell activation. This review will update the current knowledge about EBV miRNAs implicated in host immune responses. An in-depth understanding of the functions of EBV miRNAs in host antiviral immunity will shed light on the EBV-host interactions and provide potential therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Lili Qian
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
46
|
NF2/Merlin Inactivation and Potential Therapeutic Targets in Mesothelioma. Int J Mol Sci 2018; 19:ijms19040988. [PMID: 29587439 PMCID: PMC5979333 DOI: 10.3390/ijms19040988] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) gene encodes merlin, a tumor suppressor protein frequently inactivated in schwannoma, meningioma, and malignant mesothelioma (MM). The sequence of merlin is similar to that of ezrin/radixin/moesin (ERM) proteins which crosslink actin with the plasma membrane, suggesting that merlin plays a role in transducing extracellular signals to the actin cytoskeleton. Merlin adopts a distinct closed conformation defined by specific intramolecular interactions and regulates diverse cellular events such as transcription, translation, ubiquitination, and miRNA biosynthesis, many of which are mediated through Hippo and mTOR signaling, which are known to be closely involved in cancer development. MM is a very aggressive tumor associated with asbestos exposure, and genetic alterations in NF2 that abrogate merlin’s functional activity are found in about 40% of MMs, indicating the importance of NF2 inactivation in MM development and progression. In this review, we summarize the current knowledge of molecular events triggered by NF2/merlin inactivation, which lead to the development of mesothelioma and other cancers, and discuss potential therapeutic targets in merlin-deficient mesotheliomas.
Collapse
|
47
|
Abstract
Since the human genome project in 2003, the view of personalized medicine to improve diagnosis and cure diseases at the molecular level became more real. Sequencing the human genome brought some benefits in medicine such as early detection of diseases with a genetic predisposition, treating patients with rare diseases, the design of gene therapy and the understanding of pharmacogenetics in the metabolism of drugs. This review explains the concepts of pharmacogenetics, polymorphisms, mutations, variations, and alleles, and how this information has helped us better understand the metabolism of drugs. Multiple resources are presented to promote reducing the gap between scientists, physicians, and patients in understanding the use and benefits of pharmacogenetics. Some of the most common clinical examples of genetic variants and how pharmacogenetics was used to determine treatment options for patients having these variants were discussed. Finally, we evaluated some of the challenges of implementing pharmacogenetics in a clinical setting and proposed actions to be taken to make pharmacogenetics a standard diagnostic tool in personalized medicine.
Collapse
Affiliation(s)
- J T Oates
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, USA
| | - D Lopez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, USA
| |
Collapse
|
48
|
Suh SS, Kim SM, Kim JE, Hong JM, Lee SG, Youn UJ, Han SJ, Kim IC, Kim S. Anticancer activities of ethanol extract from the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:509. [PMID: 29191192 PMCID: PMC5709829 DOI: 10.1186/s12906-017-1991-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/30/2017] [Indexed: 01/18/2023]
Abstract
Background Cancer is a leading cause of human death around the world and occurs through the highly complex coordination of multiple cellular pathways. Recent studies have revealed that microalgal extracts exhibit considerable pharmaceutical activities, including those against various cancer cells. Thus, microalgae are promising candidates as novel cancer therapeutic drugs. In this study, we evaluated the biological functions of the ethanolic extract of the Antarctic freshwater microalga, Botryidiopsidaceae sp., such as its antioxidant, anti-proliferative, apoptotic and anti-invasive properties. Methods To estimate antioxidant capacity of ethanol extract of Botryidiopsidaceae sp. (ETBO), free radical 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used. The anti-proliferative activity of ETBO was assessed in several cancer cell lines (A375, Hs578T and HeLa) and non-tumorigenic keratinocyte cells (HaCaT), using MTT assay. In addition, Annexin V binding was performed to detect ETBO-induced apoptotic cells, and the expression levels of apoptosis-regulating proteins, caspase-3, p53, and Bcl-2, were determined by western blot. Boyden chamber assays were used to determine anti-migratory and anti-invasive properties of ETBO. Results ETBO exhibited antioxidant activity and concentration-dependent anticancer activities, such as anti-proliferation and pro-apoptotic activities against cancer cells. Furthermore, the expression of the apoptosis-inducing proteins, p53 and caspase-3, significantly increased in response to ETBO, whereas the expression of the anti-apoptotic protein, Bcl-2, decreased. These data imply that ETBO induces apoptosis by caspase activation through the modulation of pro-apoptotic and anti-apoptotic gene, p53 and Bcl-2, respectively. In addition, ETBO significantly inhibited migration and invasion of cervical cancer cells in a concentration-dependent manner. Conclusion In this study, ETBO exhibited considerable anticancer activities, such as inhibition of proliferation, invasion, and migration, as well as induction of apoptosis. These data suggest that ETBO is a promising therapeutic agent in cancer therapy and drug discovery.
Collapse
|
49
|
Marcus R, Maitra A, Roszik J. Recent advances in genomic profiling of adenosquamous carcinoma of the pancreas. J Pathol 2017; 243:271-272. [PMID: 28816351 DOI: 10.1002/path.4959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023]
Abstract
Adenosquamous carcinoma of the pancreas (ASCP) is a mixed tumor type which contains squamous cell carcinoma and also ductal adenocarcinoma components. Due to the rarity of this malignancy, only very limited genomic profiling has been performed. A recent paper by Fang et al. published in The Journal of Pathology contributed to our knowledge of genomic alterations by performing whole-genome and -exome sequencing of 17 ASCP tumors. They found major genomic similarities to pancreatic ductal adenocarcinoma; however, the p53 pathway was altered in a greater proportion of cases, while a high frequency of 3p loss was a distinct copy number alteration pattern observed in ASCP. Laser capture microdissection revealed that adenocarcinoma and squamous carcinoma components of ASCP harbor similar genomic variations, indicating that the origin of tumor components is the same or similar. Although the study published by Fang et al. increases our knowledge of this rare mixed tumor type, further investigation, including RNA sequencing, will be needed to fully characterize this malignancy and to aid the development of novel treatment approaches. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rebecca Marcus
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Axelrod J, Delaney J. Pathways to Genome-targeted Therapies in Serous Ovarian Cancer. JOURNAL OF NATURE AND SCIENCE 2017; 3:e408. [PMID: 28815209 PMCID: PMC5555645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genome sequencing technologies and corresponding oncology publications have generated enormous publicly available datasets for many cancer types. While this has enabled new treatments, and in some limited cases lifetime management of the disease, the treatment options for serous ovarian cancer remain dismal. This review summarizes recent advances in our understanding of ovarian cancer, with a focus on heterogeneity, functional genomics, and actionable data.
Collapse
|