1
|
Zhang K, Yin Q, Ma Y, Cao M, Li L, Jin X, Leng J. Nanovaccine loaded with seno-antigen target senescent cells to improve metabolic disorders of adipose tissue and cardiac dysfunction. Hum Vaccin Immunother 2025; 21:2479229. [PMID: 40088037 PMCID: PMC11916409 DOI: 10.1080/21645515.2025.2479229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025] Open
Abstract
The buildup of senescent cells exacerbates metabolic disorders in adipose tissue and contributes to aging-related cardiac dysfunction. Targeted clearance of senescent cells can markedly ameliorate these aging-related diseases. Here, we developed a novel nanovaccine (GK-NaV) loaded with seno-antigen that is self-assembled from the fusion of cationic protein (K36) and seno-antigen peptide (Gpnmb). The GK-NaV could be highly engulfed by bone marrow-derived dendritic cells (BMDCs) and efficiently present antigens on the cellular surface, thereby promoting DCs maturation and activation of CD8+T cells in vitro. Following subcutaneous immunization, GK-NaV not only exhibited a noticeable antigen depot effect but also markedly activated specific cellular immune responses, enhancing the immunoreactivity and cytotoxic effects of CD8+T cells. Consequently, the targeted anti-aging immunity triggered by GK-NaV demonstrated the ability to selectively eliminate senescent adipocytes and cardiomyocytes in high-fat diet (HFD)-induced progeroid mice, leading to a significant improvement in age-related metabolic disorders in adipose tissue and cardiac dysfunction. Hence, our findings indicate that immunization with GK-NaV targeting seno-antigens may represent a promising strategy for novel senolytic therapies.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Qiliang Yin
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Yucen Ma
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Mengyu Cao
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Lingwei Li
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Xinliang Jin
- Department of General Surgery, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jiyan Leng
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep 2025; 15:3392. [PMID: 39870681 PMCID: PMC11772771 DOI: 10.1038/s41598-025-86130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors. We also discuss the practical application challenges associated with enhancing the efficiency of CPPs in terms of their stability and targeting ability. In conclusion, the combination of CPPs with tumor immunotherapy is a promising strategy that has potential for precision administration and requires further research for optimal implementation.
Collapse
Affiliation(s)
- Di Yang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Jiang J, Zhang X, Wang H, Spanos M, Jiang F, Ni L, Li J, Li G, Lin Y, Xiao J. Closer to The Heart: Harnessing the Power of Targeted Extracellular Vesicle Therapies. Adv Biol (Weinh) 2024; 8:e2300141. [PMID: 37953665 DOI: 10.1002/adbi.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/08/2023] [Indexed: 11/14/2023]
Abstract
Extracellular vesicles (EVs) have emerged as novel diagnostic and therapeutic approaches for cardiovascular diseases. EVs derived from various origins exhibit distinct effects on the cardiovascular system. However, the application of native EVs is constrained due to their poor stabilities and limited targeting capabilities. Currently, targeted modification of EVs primarily involves genetic engineering, chemical modification (covalent, non-covalent), cell membrane modification, and biomaterial encapsulation. These techniques enhance the stability, biological activity, target-binding capacity, and controlled release of EVs at specific cells and tissues. The diverse origins of cardioprotective EVs are covered, and the applications of cardiac-targeting EV delivery systems in protecting against cardiovascular diseases are discussed. This review summarizes the current stage of research on the potential of EV-based targeted therapies for addressing cardiovascular disorders.
Collapse
Affiliation(s)
- Jizong Jiang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Fei Jiang
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingyan Ni
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jin Li
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanjuan Lin
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Islam MM, Raikwar S. Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles. Protein Pept Lett 2024; 31:209-228. [PMID: 38509673 DOI: 10.2174/0109298665292469240228064739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.
Collapse
Affiliation(s)
- Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
5
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Timotievich ED, Shilovskiy IP, Khaitov MR. Cell-Penetrating Peptides as Vehicles for Delivery of Therapeutic Nucleic Acids. Mechanisms and Application in Medicine. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1800-1817. [PMID: 38105200 DOI: 10.1134/s0006297923110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
Collapse
Affiliation(s)
- Ekaterina D Timotievich
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| | - Musa R Khaitov
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
7
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
8
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Yin Q, Wang Y, Xiang Y, Xu F. Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses. Hum Vaccin Immunother 2022; 18:2119020. [PMID: 36170662 DOI: 10.1080/21645515.2022.2119020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An attractive type of cancer immunotherapy is cancer therapeutic vaccines that induce antitumor immunity effectively. Although supportive results in the recent vaccine studies, there are still numerous drawbacks, such as poor stability, weak immunogenicity and strong toxicity, to be tackled for promoting the potency and durability of antitumor efficacy. NPs (Nanoparticles)-based vaccines offer unique opportunities to breakthrough the current bottleneck. As a rule, nanovaccines are new the generations of vaccines that use NPs as carriers and/or adjuvants. Several advantages of nanovaccines are constantly explored, including optimal nanometer size, high stability, plenty of antigen loading, enhanced immunogenicity, tunable antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Here, we summarized the merits and highlight the diverse role nanovaccines play in improving antitumor responses.
Collapse
Affiliation(s)
- Qiliang Yin
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Academy of Health Management, Changchun University of Chinese Medicine, Changchun, China
| | - Yipeng Xiang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
A Water-Soluble Polysaccharide from the Fibrous Root of Anemarrhena asphodeloides Bge. and Its Immune Enhancement Effect in Vivo and in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8723119. [PMID: 36124017 PMCID: PMC9482487 DOI: 10.1155/2022/8723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Background The fibrous roots of Anemarrhena asphodeloides Bge. (FRAAB) are byproducts of the rhizome of Anemarrhena asphodeloides. Some studies have revealed secondary metabolic small molecules in FRAAB, but there are few reports on the polysaccharides of FRAAB (PFRAAB). Aim of the Study. The present study aimed to investigate the preliminary characterization and underlying mechanism of immune stimulation of PFRAAB. Materials and Methods The crude polysaccharide of FRAAB was obtained by hot water extraction and alcohol precipitation, and PFRAAB was purified by a diethylaminoethyl-52 (DEAE-52) cellulose chromatographic column and graphene dialysis membrane. The preliminary characterization of PFRAAB was studied by ultraviolet (UV) scanning and Fourier Transform Infrared Reflection (FTIR). The molecular weight and composition of PFRAAB were analysed by high-performance gel permeation chromatography (HPGPC) and high-performance liquid chromatography (HPLC), respectively. The immune stimulation of PFRAAB was investigated by using cyclophosphamide- (CCP-) treated mice and RAW264.7 cells. Results A water-soluble PFRAAB was obtained with a molecular weight of 115 kDa and was mainly composed of arabinose (ara), galactose (gal), glucose (glc), and mannose (man). Compared with CCP-induced mice, PFRAAB significantly (p < 0.05 or p < 0.01) increased the spleen and thymus index, ameliorated injury to the spleen and thymus, and evaluated immunoglobulin levels. In addition, PFRAAB also increased the secretion of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and IL-6 in RAW264.7 cells and upregulated the expression of toll-like receptor 4 (TLR4), Myd88, nuclear factor kappa-B (NF-κB) P65, p–NF–κB P65, IKB-α, and p-IKB-α. Conclusion PFRAAB possesses immune stimulation activity and can be used as a potential resource for immune-enhancing drugs. Our present study provides a scientific basis for the comprehensive development of Anemarrhena asphodeloides medicinal plant resources.
Collapse
|
11
|
Borgoyakova MB, Karpenko LI, Rudometov AP, Shanshin DV, Isaeva AA, Nesmeyanova VS, Volkova NV, Belenkaya SV, Murashkin DE, Shcherbakov DN, Volosnikova EA, Starostina EV, Orlova LA, Danilchenko NV, Zaikovskaya AV, Pyankov OV, Ilyichev AA. Immunogenic Properties of the DNA Construct Encoding the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Mol Biol 2021; 55:889-898. [PMID: 34955558 PMCID: PMC8682036 DOI: 10.1134/s0026893321050046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
The development of preventive vaccines became the first order task in the COVID-19 pandemic caused by SARS-CoV-2. This paper reports the construction of the pVAX-RBD plasmid containing the Receptor-Binding Domain (RBD) of the S protein and a unique signal sequence 176 which promotes target protein secretion into the extracellular space thereby increasing the efficiency of humoral immune response activation. A polyglucine-spermidine conjugate (PGS) was used to deliver pVAX-RBD into the cells. The comparative immunogenicity study of the naked pVAX-RBD and pVAX-RBD enclosed in the PGS envelope showed that the latter was more efficient in inducing an immune response in the immunized mice. In particular, RBD-specific antibody titers were shown in ELISA to be no higher than 1 : 1000 in the animals from the pVAX-RBD group and 1 : 42 000, in the pVAX-RBD-PGS group. The pVAX-RBD‒PGS construct effectively induced cellular immune response. Using ELISpot, it has been demonstrated that splenocytes obtained from the immunized animals effectively produced INF-γ in response to stimulation with the S protein-derived peptide pool. The results suggest that the polyglucine-spermidine conjugate-enveloped pVAX-RBD construct may be considered as a promising DNA vaccine against COVID-19.
Collapse
Affiliation(s)
- M B Borgoyakova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - L I Karpenko
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A P Rudometov
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D V Shanshin
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A A Isaeva
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia.,World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - V S Nesmeyanova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia.,World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - N V Volkova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - S V Belenkaya
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D E Murashkin
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D N Shcherbakov
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia.,World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - E A Volosnikova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - E V Starostina
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - L A Orlova
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - N V Danilchenko
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A V Zaikovskaya
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - O V Pyankov
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A A Ilyichev
- Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance, 630559 Koltsovo, Novosibirsk oblast Russia
| |
Collapse
|
12
|
Lobaina Y, Urquiza D, Garay H, Perera Y, Yang K. Evaluation of Cell-Penetrating Peptides as Mucosal Immune Enhancers for Nasal Vaccination. Int J Pept Res Ther 2021; 27:2873-2882. [PMID: 34658688 PMCID: PMC8511864 DOI: 10.1007/s10989-021-10296-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Cell-penetrating peptides (CPPs) have been evaluated as enhancers in drug delivery, their addition in medical formulations favors drug absorption allowing obtaining the pharmacological effect with lower doses. In vaccine formulations their inclusion has been also explored with interesting results. Currently mucosal vaccination constitutes a promising alternative with the main advantage of inducing both systemic and mucosal immune responses, which are crucial for control tumors and infections at mucosal tissues. In the present work the nasal immune-enhancing effect of four CPPs was evaluated in Balb/c mice. Animals were intranasally immunized with CPP and the recombinant hepatitis B surface protein (HBsAg) as model antigen. The antibody response in sera and mucosal tissue was measured by ELISA. The IFN-γ secretion response at spleen was also evaluated by ELISPOT and ELISA. Among the CPPs studied one novel peptide stand out by its ability to potentiate the humoral and cellular immune response against the co-administered antigen. Considering that the use of mucosal routes is a promising strategy in vaccination, which are gaining special relevance nowadays in the development of novel candidates against SARS-CoV-2 and other potential emerging respiratory virus, the searching and development of safe mucosal adjuvants constitute a current need.
Collapse
Affiliation(s)
- Yadira Lobaina
- Biomedical Research Division, Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600 Havana, Cuba.,China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City, 425000 Hunan Province China
| | - Dioslaida Urquiza
- Animal Facilities, Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Hilda Garay
- Biomedical Research Division, Peptide Synthesis Lab, Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Yasser Perera
- Biomedical Research Division, Pharmaceutical Department, Molecular Oncology Group, Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba.,China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City, 425000 Hunan Province China
| | - Ke Yang
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City, 425000 Hunan Province China
| |
Collapse
|
13
|
Tang J, Zhou J. The In Vivo Fate and Strategies of Improving the Targeting Effect of Nanoparticles. Curr Drug Targets 2021; 22:844. [PMID: 34112065 DOI: 10.2174/138945012208210407114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jihui Tang
- School of Pharmacy, Anhui Medical University 81 Meishan Road, Hefei 230032, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|