1
|
Raman R, Debata S, Govindarajan T, Kumar P. Targeting Triple-Negative Breast Cancer: Resistance Mechanisms and Therapeutic Advancements. Cancer Med 2025; 14:e70803. [PMID: 40318146 PMCID: PMC12048392 DOI: 10.1002/cam4.70803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most heterogeneous and menacing forms of breast cancer, with no sustainable cure available in the current treatment landscape. Its lack of targets makes it highly unresponsive to various treatment modalities, which is why chemotherapy continues to be the primary form of treatment, despite the high rates of patients developing chemoresistance. In recent years, however, there has been significant progress in identifying and understanding the role of several aspects that might contribute to genomic instability and other hallmarks of cancer, including cellular proteins, immune targets, and epigenetic mechanisms, which are desirable as they permit reversibility easier than the often-adamant genetic changes. METHODS A literature review was conducted on the role of various TNBC associated biomarkers, their therapeutic applications, and their role in tumorigenesis and tumor maintenance, with a focus on linking both the driving biological mechanisms and emerging treatment options for TNBC. CONCLUSIONS Shifting the focus of treatment to identify crucial tumor cell subpopulations and associated biomarkers, such as local immune cell populations and cancer stem cells, could potentially solve or simplify decades' worth of problems that are associated with TNBC, bolstering early detection and the evolution of precision medicine and treatment. The techniques that can be used here are epigenetic analysis and RNA sequencing. Biomarkers, such as PD-L1, survivin, and ABC transporters, are implicated in several crucial processes that maintain tumors, such as cell proliferation, metastasis, immunosuppression, and stemness. Complex treatment options such as, immunotherapy, pathway inhibition, PARP inhibition, virotherapy, and RNA targeting have been considered for TNBC. Phytochemicals are also being considered as a treatment modality for TNBC, as a supplement to chemotherapy and radiation therapy, or as sole treatment.
Collapse
Affiliation(s)
- Rachana Raman
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Shristi Debata
- Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Praveen Kumar
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
Wang Z, Liu Y, Asemi Z. Quercetin and microRNA Interplay in Apoptosis Regulation: A New Therapeutic Strategy for Cancer? Curr Med Chem 2025; 32:939-957. [PMID: 38018191 DOI: 10.2174/0109298673259466231031050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yanqing Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zatollah Asemi
- Department of Nutrition, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
3
|
Vahidi S, Agah S, Mirzajani E, Asghari Gharakhyli E, Norollahi SE, Rahbar Taramsari M, Babaei K, Samadani AA. microRNAs, oxidative stress, and genotoxicity as the main inducers in the pathobiology of cancer development. Horm Mol Biol Clin Investig 2024; 45:55-73. [PMID: 38507551 DOI: 10.1515/hmbci-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body's ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | | | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Morteza Rahbar Taramsari
- Department of Forensic Medicine, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Hoang J, Patil SL, Srinoi P, Liu T, Marquez MD, Khantamat O, Tuntiwechapikul W, Gunaratne PH, Lee TR. Transfection of Unmodified MicroRNA Using Monolayer-Coated Au Nanoparticles as Gene-Delivery Vehicles. ACS APPLIED BIO MATERIALS 2024; 7:230-237. [PMID: 38133569 DOI: 10.1021/acsabm.3c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This article describes a monolayer-coated gold nanoparticle-based transfection system for the delivery of microRNA (miRNA) into human osteosarcoma (HOS) cells. Two distinct ammonium-terminated adsorbates were used in this study, which provided a platform for ionic bonding of the miRNA onto gold nanoparticles (AuNPs). The custom-designed monolayer-coated gold nanoparticles were characterized by dynamic light scattering, gel mobility shift assay, transmission electron microscopy, ultraviolet-visible spectrometry, zeta potential, and X-ray photoelectron spectroscopy. The miRNA-loaded gold nanoparticles were transfected, and the level of intracellular miRNA delivered and taken up by cells was measured by Taqman qPCR. The overall analysis indicated a successful delivery of miRNA into the HOS cells at an ∼11,000-fold increase compared to nontreated cells.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, United States
| | - Sagar L Patil
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, United States
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Pannaree Srinoi
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Tingting Liu
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Maria D Marquez
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, United States
| | - T Randall Lee
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
5
|
Cronin JM, Yu AM. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Drug Metab Dispos 2023; 51:685-699. [PMID: 36948592 PMCID: PMC10197202 DOI: 10.1124/dmd.122.001008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.
Collapse
Affiliation(s)
- Joseph M Cronin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| |
Collapse
|
6
|
Johnson B, Zhuang L, Rath EM, Yuen ML, Cheng NC, Shi H, Kao S, Reid G, Cheng YY. Exploring MicroRNA and Exosome Involvement in Malignant Pleural Mesothelioma Drug Response. Cancers (Basel) 2022; 14:cancers14194784. [PMID: 36230710 PMCID: PMC9564288 DOI: 10.3390/cancers14194784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a deadly thoracic malignancy and existing treatment options are limited. Chemotherapy remains the most widely used first-line treatment regimen for patients with unresectable MPM, but is hampered by drug resistance issues. The current study demonstrated a modest enhancement of MPM cell sensitivity to chemotherapy drug treatment following microRNA (miRNA) transfection in MPM cell lines, albeit not for all tested miRNAs. This effect was more pronounced for FAK (PND-1186) small molecule inhibitor treatment; consistent with previously published data. We previously established that MPM response to survivin (YM155) small molecule inhibitor treatment is unrelated to basal survivin expression. Here, we showed that MPM response to YM155 treatment is enhanced following miRNA transfection of YM155-resistant MPM cells. We determined that YM155-resistant MPM cells secrete a higher level of exosomes in comparison to YM155-sensitive MPM cells. Despite this, an exosome inhibitor (GW4896) did not enhance MPM cell sensitivity to YM155. Additionally, our study showed no evidence of a correlation between the mRNA expression of inhibitor of apoptosis (IAP) gene family members and MPM cell sensitivity to YM155. However, two drug transporter genes, ABCA6 and ABCA10, were upregulated in the MPM cell lines and correlated with poor sensitivity to YM155.
Collapse
Affiliation(s)
- Ben Johnson
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Correspondence: ; Tel.: +61-976-79869
| | - Ling Zhuang
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Emma M. Rath
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Giannoulatou Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Man Lee Yuen
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Ngan Ching Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Huaikai Shi
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Steven Kao
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Chris O’Brien Life House, Sydney, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glen Reid
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| |
Collapse
|
7
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
8
|
Chakraborty S, Nath D. A Study on microRNAs Targeting the Genes Overexpressed in Lung Cancer and their Codon Usage Patterns. Mol Biotechnol 2022; 64:1095-1119. [DOI: 10.1007/s12033-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
9
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
10
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
11
|
Torki Z, Ghavi D, Hashemi S, Rahmati Y, Rahmanpour D, Pornour M, Alivand MR. The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: an update. Cancer Chemother Pharmacol 2021; 88:771-793. [PMID: 34510251 DOI: 10.1007/s00280-021-04337-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is an effective chemotherapy agent against a wide variety of tumors. However, intrinsic or acquired resistance diminishes the sensitivity of cancer cells to DOX, which leads to a cancer relapse and treatment failure. Resolutions to this challenge includes identification of the molecular pathways underlying DOX sensitivity/resistance and the development of innovative techniques to boost DOX sensitivity. DOX is classified as a Topoisomerase II poison, which is cytotoxic to rapidly dividing tumor cells. Molecular mechanisms responsible for DOX resistance include effective DNA repair and resumption of cell proliferation, deregulated development of cancer stem cell and epithelial to mesenchymal transition, and modulation of programmed cell death. MicroRNAs (miRNAs) have been shown to potentiate the reversal of DOX resistance as they have gene-specific regulatory functions in DOX-responsive molecular pathways. Identifying the dysregulation patterns of miRNAs for specific tumors following treatment with DOX facilitates the development of novel combination therapies, such as nanoparticles harboring miRNA or miRNA inhibitors to eventually prevent DOX-induced chemoresistance. In this article, we summarize recent findings on the role of miRNAs underlying DOX sensitivity/resistance molecular pathways. Also, we provide latest strategies for utilizing deregulated miRNA patterns as biomarkers or miRNAs as tools to overcome chemoresistance and enhance patient's response to DOX treatment.
Collapse
Affiliation(s)
- Zahra Torki
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Hashemi
- Department of Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Sriram V, Lee JY. Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf B Biointerfaces 2021; 208:112061. [PMID: 34492599 DOI: 10.1016/j.colsurfb.2021.112061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Targeted combination therapy has shown promise to achieve maximum therapeutic efficacy by overcoming drug resistance. MicroRNA-21 (miR-21) is frequently overexpressed in various cancer types including breast and non-small cell lung cancer and its functions can be inhibited by miR inhibitor (miR-21i). A combination of miR-21i and a chemo drug, doxorubicin (Dox), can provide synergistic effects. Here, we developed a calcium phosphate (CaP)-coated nanoparticle (NP) formulation to co-deliver miR-21i along with Dox. This NP design can be used to deliver the two agents with different physiochemical properties. The NP formulation was optimized for particle size, polydispersity, Dox loading, and miR-21i loading. The NP formulation was confirmed to downregulate miR-21 levels and upregulate tumor suppressor gene levels. The cytotoxic efficacy of the combined miR-21i and Dox-containing NPs was found to be higher than that of Dox. Therefore, the CaP-coated hybrid lipid-polymeric NPs hold potential for the delivery of miR-21i and Dox.
Collapse
Affiliation(s)
- Vishnu Sriram
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States
| | - Joo-Youp Lee
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States.
| |
Collapse
|
13
|
Peraza-Vega RI, Valverde M, Rojas E. miR-27b-3p a Negative Regulator of DSB-DNA Repair. Genes (Basel) 2021; 12:1333. [PMID: 34573315 PMCID: PMC8471791 DOI: 10.3390/genes12091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding the regulation of DNA repair mechanisms is of utmost importance to identify altered cellular processes that lead to diseases such as cancer through genomic instability. In this sense, miRNAs have shown a crucial role. Specifically, miR-27b-3 biogenesis has been shown to be induced in response to DNA damage, suggesting that this microRNA has a role in DNA repair. In this work, we show that the overexpression of miR-27b-3p reduces the ability of cells to repair DNA lesions, mainly double-stranded breaks (DSB), and causes the deregulation of genes involved in homologous recombination repair (HRR), base excision repair (BER), and the cell cycle. DNA damage was induced in BALB/c-3T3 cells, which overexpress miR-27b-3p, using xenobiotic agents with specific mechanisms of action that challenge different repair mechanisms to determine their reparative capacity. In addition, we evaluated the expression of 84 DNA damage signaling and repair genes and performed pathway enrichment analysis to identify altered cellular processes. Taken together, our results indicate that miR-27b-3p acts as a negative regulator of DNA repair when overexpressed.
Collapse
Affiliation(s)
| | | | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (R.I.P.-V.); (M.V.)
| |
Collapse
|
14
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
15
|
Mahmoudian-Sani MR, Asadi-Samani M. Modulation of MicroRNAs by Euphorbia Microsciadia Boiss in MDA-MB-231 Cell Line: New Possibilities in Breast Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:174-184. [PMID: 32603285 DOI: 10.2174/1574892815666200630102944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND A large number of Euphorbia species have been evaluated for anticancer effects; however, their anticancer mechanisms have not been established up to now. OBJECTIVE The present study aimed to evaluate the effects of Euphorbia microsciadia (E. microsciadia) Boiss on the modulation of micro (mi) RNAs in MDA-MB-231 cell line. METHODS As the first step, the inhibitory concentration of hydroalcoholic extract of E. microsciadia on MDA-MB-231 cells was examined using the MTT assay, bypassing 24 and 48h from seeding. The real-time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was also utilized to determine Let-7, miR-15, miR-16, miR-29, miR-151, miR-155, miR-21, miR-146b, miR-181b, miR-221, miR-222, miR-21, and miR-146b expressions in MDA-MB-231 cells, by passing 24 and 48h from treating with the extract of E. microsciadia. RESULTS The results reveal the cytotoxic effects of E. microsciadia on MDA-MB-231 cell line in a dose-dependent manner. The half maximal Inhibitory Concentrations (IC50) were also equal to 275 and 240μg/ml for E. microsciadia, by passing 24 and 48h from the treatment, respectively. Furthermore, it was confirmed that, E. microsciadia had augmented the expression levels of Let-7, miR-15, miR-16, miR-29, and miR-34a, which lead to an increase in apoptosis. CONCLUSION E. microsciadia could modulate some miRNAs involved in cell cycle arrest and apoptosis in MDA-MB-231 cell line. Accordingly, targeting miRNAs by E. microsciadia can open some newer avenues for breast cancer therapy.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13123075. [PMID: 34203051 PMCID: PMC8234974 DOI: 10.3390/cancers13123075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we begin with the role of natural extracellular vesicles (EVs) in high-grade serous ovarian cancer (HGSOC). Then, we narrow our focus on the advantages of using EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics. Furthermore, we discuss the challenges of the clinical translation of engineering EV mimetic drug delivery systems and the promising directions of further development. Abstract High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
- Correspondence: ; Tel.: +966-1-333-31137
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Adaugo C. Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Abdullah A. Alshehri
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fahad A. Almughem
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulaziz M. Almalik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| |
Collapse
|
18
|
Ray I, Goswami S. Circadian rhythm genes in cancer: insight into their functions and regulation involving noncoding RNAs. Chronobiol Int 2021; 38:1231-1243. [PMID: 34024245 DOI: 10.1080/07420528.2021.1928157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 24-h circadian rhythm handles a wide variety of physiological needs. Clock genes, in coordination with other tissue-specific factors regulate various processes and often turns responsible for the pathological conditions when altered. Cancer is one such disease where the clock genes have been shown to contribute at multiple levels modulating key hallmarks of cancer. Most importantly, adding to this complication, noncoding RNAs (ncRNAs) have emerged as one of the major post-transcriptional regulators of gene expression and many recent studies have indicated about involvement of microRNAs or long noncoding RNAs in the process. In this review, we have described how do circadian pathway genes participated in oncogenesis and also updated the latest status of ncRNA involvement. We also try to address the existing gaps to have a more comprehensive understanding of the phenomenon in future.Abbreviations: HIFs: hypoxia-inducible factors; VEGF: Vascular endothelial growth factor; Mdm2: Mouse double minute 2 homolog; ATM: Ataxia telangiectasia mutated; Chk2: Checkpoint kinase 2; Bcl-Xl: B-cell lymphoma-extra-large; Bcl-2: B-cell lymphoma 2; DGCR8: DiGeorge syndrome chromosomal region 8; PPAR-γ: Peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Indrani Ray
- National Institute of Biomedical Genomics, Kalyani, India
| | | |
Collapse
|
19
|
Di Fiore R, Suleiman S, Pentimalli F, O’Toole SA, O’Leary JJ, Ward MP, Conlon NT, Sabol M, Ozretić P, Erson-Bensan AE, Reed N, Giordano A, Herrington CS, Calleja-Agius J. Could MicroRNAs Be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview. Int J Mol Sci 2021; 22:3822. [PMID: 33917022 PMCID: PMC8067678 DOI: 10.3390/ijms22083822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gynecological cancers pose an important public health issue, with a high incidence among women of all ages. Gynecological cancers such as malignant germ-cell tumors, sex-cord-stromal tumors, uterine sarcomas and carcinosarcomas, gestational trophoblastic neoplasia, vulvar carcinoma and melanoma of the female genital tract, are defined as rare with an annual incidence of <6 per 100,000 women. Rare gynecological cancers (RGCs) are associated with poor prognosis, and given the low incidence of each entity, there is the risk of delayed diagnosis due to clinical inexperience and limited therapeutic options. There has been a growing interest in the field of microRNAs (miRNAs), a class of small non-coding RNAs of ∼22 nucleotides in length, because of their potential to regulate diverse biological processes. miRNAs usually induce mRNA degradation and translational repression by interacting with the 3' untranslated region (3'-UTR) of target mRNAs, as well as other regions and gene promoters, as well as activating translation or regulating transcription under certain conditions. Recent research has revealed the enormous promise of miRNAs for improving the diagnosis, therapy and prognosis of all major gynecological cancers. However, to date, only a few studies have been performed on RGCs. In this review, we summarize the data currently available regarding RGCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Napoli, Italy;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Neil T. Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, 9 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University, Ankara 06810, Turkey;
| | - Nicholas Reed
- Beatson Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - C. Simon Herrington
- Cancer Research UK Edinburgh Centre, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
20
|
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM, Nigam M. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83:109995. [PMID: 33785398 DOI: 10.1016/j.cellsig.2021.109995] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
The discovery of micro RNAs (miRNA) in cancer has opened up new vistas for researchers in recent years. Micro RNAs area set of small, endogenous, highly conserved, non-coding RNAs that control the expression of about 30% genes at post-transcriptional levels. Typically, microRNAs impede the translation and stability of messenger RNAs (mRNA), control genes associated with cellular processes namely inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Compelling findings revealed that miRNA mutations or disruption correspond to diverse human cancers and suggest that miRNAs can function as tumor suppressors or oncogenes. Here we summarize the literature on these master regulators in clinical settings from last three decades as both abrupt cancer therapeutics and as an approach to sensitize tumors to chemotherapy. This review highlights (I) the prevailing perception of miRNA genomics, biogenesis, as well as function; (II) the significant advancements in regulatory mechanisms in the expression of carcinogenic genes; and (III) explains, how miRNA is utilized as a diagnostic and prognostic biomarker for the disease stage indicating survival as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mridul Budakoti
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Abhay Shikhar Panwar
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Diksha Molpa
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | | | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| |
Collapse
|
21
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
22
|
Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online 2021; 20:21. [PMID: 33593374 PMCID: PMC7885381 DOI: 10.1186/s12938-021-00857-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, microRNAs (miRNAs) have emerged as important molecules associated with the regulation of gene expression in humans and other organisms, expanding the strategies available to diagnose and handle several diseases. This paper presents a systematic review of literature of miRNAs related to cancer development and explores the main techniques used to quantify these molecules and their limitations as screening strategy. The bibliographic research was conducted using the online databases, PubMed, Google Scholar, Web of Science, and Science Direct searching the terms "microRNA detection", "miRNA detection", "miRNA and prostate cancer", "miRNA and cervical cancer", "miRNA and cervix cancer", "miRNA and breast cancer", and "miRNA and early cancer diagnosis". Along the systematic review over 26,000 published papers were reported, and 252 papers were returned after applying the inclusion and exclusion criteria, which were considered during this review. The aim of this study is to identify potential miRNAs related to cancer development that may be useful for early cancer diagnosis, notably in the breast, prostate, and cervical cancers. In addition, we suggest a preliminary top 20 miRNA panel according to their relevance during the respective cancer development. Considering the progressive number of new cancer cases every year worldwide, the development of new diagnostic tools is critical to refine the accuracy of screening tests, improving the life expectancy and allowing a better prognosis for the affected patients.
Collapse
Affiliation(s)
- Leonardo J. Galvão-Lima
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Antonio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| | - Elio J. S. S. Barreto
- Division of Oncology and Hematology, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| |
Collapse
|
23
|
Radiation Can Regulate the Expression of miRNAs Associated with Osteogenesis and Oxidation in Exosomes from Peripheral Blood Plasma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646323. [PMID: 33628370 PMCID: PMC7899774 DOI: 10.1155/2021/6646323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
Objectives Radiotherapy is a common therapy in head and neck tumors, which may cause a side effect radiation bone injury (RBI). Furthermore, it has been investigated that microRNA (miRNA) expression levels were altered after radiotherapy. Exosomes play a role in bone formation as miRNA containers, while radiation affects exosomes composition, secretion, and function. So, our objective is to explore changes in miRNA levels during bone formation after radiotherapy and identify the differentially expressed miRNAs (DE-miRs) in plasma exosomes during the process of osteogenesis related to irradiation. Materials and Methods In this study, we analyzed nine samples from three rabbits exposed twice to radiation (15 Gy each) and detected DE-miRs from irradiated plasma exosomes during the process of osteogenesis by RNA sequencing. Further, we identified DE-miRs with significant differences and predicted their target genes via the bioinformatics analysis tools Targetscan v7.2 and miRPathDB v2.0. Finally, we identified radiation-responsive miRNAs and predicted their target genes during osteogenesis. Results Taken together, we have identified some DE-miRs in irradiated plasma exosomes, which were involved in several vital signaling pathways related to bone physiology, such as the Wnt pathway, MAPK cascade, and calcium modulating pathway. Conclusions We have found that plasma exosomes are one of the ways by which radiation can affect bone metabolism and regeneration. However, the specific mechanisms of how these plasma exosomal miRNAs mediate the osteogenesis pathways must be further investigated. Clinical Relevance. Radiotherapy may cause radiation bone injury, and miRNA expression levels in rabbit plasma exosomes are altered after radiotherapy. High-throughput RNA sequencing can identify the differentially expressed miRNAs in irradiated plasma exosomes during the process of osteogenesis. These findings make sense to develop novel therapeutic strategies for treating radiation-induced bone injury disorders.
Collapse
|
24
|
Mukherjee S, Dutta A, Chakraborty A. External modulators and redox homeostasis: Scenario in radiation-induced bystander cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108368. [PMID: 34083032 DOI: 10.1016/j.mrrev.2021.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/07/2023]
Abstract
Redox homeostasis is imperative to maintain normal physiologic and metabolic functions. Radiotherapy disturbs this balance and induces genomic instability in diseased cells. However, radiation-induced effects propagate beyond the targeted cells, affecting the adjacent non-targeted cells (bystander effects). The cellular impact of radiation, thus, encompasses both targeted and non-targeted effects. Use of external modulators along with radiation can increase radio-therapeutic efficiency. The modulators' classification as protectors or sensitizers depends on interactions with damaged DNA molecules. Thus, it is necessary to realize the functions of various radio-sensitizers or radio-protectors in both irradiated and bystander cells. This review focuses on some modulators of radiation-induced bystander effects (RIBE) and their action mechanisms. Knowledge about the underlying signaling cross-talk may promote selective sensitization of radiation-targeted cells and protection of bystander cells.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Dutta
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Chakraborty
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India.
| |
Collapse
|
25
|
Monteleone NJ, Lutz CS. miR-708-5p enhances erlotinib/paclitaxel efficacy and overcomes chemoresistance in lung cancer cells. Oncotarget 2020; 11:4699-4721. [PMID: 33473256 PMCID: PMC7771713 DOI: 10.18632/oncotarget.27840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is a collection of aggressive tumors generally not diagnosed until late-stage, resulting in high mortality rates. The vast majority of non-small cell lung cancer (NSCLC) patients undergo combinatory chemotherapeutic treatment, which initially reduces tumor growth, but frequently becomes ineffective due to toxicity and resistance. Researchers have identified multiple signaling pathways involved in lung cancer chemoresistance, including cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1) derived prostaglandin E2 (PGE2). While COX-2 inhibitors have shown promise in the clinic, their use is limited due to severe side effects. One novel approach to effectively suppress COX-2 signaling is through microRNA (miRNA). MiRNAs are small-noncoding RNAs commonly misexpressed in cancer. One tumor suppressive miRNA, miR-708-5p, has been shown to repress pro-resistant signaling pathways, including COX-2 and mPGES-1. Here, we demonstrate that chemotherapies reduce COX-2 expression, possibly through induction of miR-708-5p. Moreover, combination treatment of erlotinib (ERL) or paclitaxel (PAC) with miR-708-5p enhances COX-2 and mPGES-1 protein suppression. We also show that combination chemotherapeutic and miR-708-5p treatment intensifies the anti-proliferative and pro-apoptotic effects of ERL and PAC. We also created ERL and PAC resistant lung cancer cell lines, which have increased COX-2 expression and diminished miR-708-5p levels compared to naïve lung cancer cells. While ERL and PAC treatments do not alter resistant cell phenotype alone, combination treatment with miR-708-5p partially restores the chemotherapies' anti-proliferative effects and fully restores their pro-apoptotic qualities. These data suggest miR-708-5p may have potential combinatory therapeutic value to more efficaciously treat lung tumors while overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicholas J Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| |
Collapse
|
26
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
27
|
Giráldez-Pérez RM, Grueso E, Lhamyani S, Perez-Tejeda P, Gentile AM, Kuliszewska E, Roman-Perez J, El Bekay R. miR-21/Gemini surfactant-capped gold nanoparticles as potential therapeutic complexes: Synthesis, characterization and in vivo nanotoxicity probes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Eshghifar N, Badrlou E, Pouresmaeili F. The roles of miRNAs' clinical efficiencies in the colorectal cancer pathobiology: A review article. Hum Antibodies 2020; 28:273-285. [PMID: 32623393 DOI: 10.3233/hab-200417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MiRNAs (microRNAs) are defined as micro directors and regulators of gene expression. Since altered miRNA expression is signified in the pathobiology of diverse cancers such as colorectal cancers (CRCs), these molecules are described as therapeutic targets, either. Manipulation of miRNAs could lead to further therapy for chemo and radio-resistant CRCs. The usage of microRNAs has indicated prominent promise in the prognosis and diagnosis of CRC, because of their unique expression pattern associated with cancer types and malignancies. Nowadays, many researchers are analyzing the correlation between miRNA polymorphisms and cancer risk. With continuous incompatibility in colorectal cancer (CRC) miRNAs expression data, it is critical to move toward the content of a "pre-laboratory" analysis to speed up efficient accuracy medicine and translational study. Pathway study for the highest expressed miRNAs- regulated target genes resulted in the identification of a considerable number of genes associated with CRC pathway including PI3K, TGFβ, and APC. In this review, we aimed to collect fruitful information about miRNAs and their potential roles in CRC, and provide a meta-analysis of the most frequently studied miRNAs in association with the disease.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Molecular and Cellular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Badrlou
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang F, Meng F, Wong SCC, Cho WC, Yang S, Chan LW. Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer. Ther Adv Respir Dis 2020; 14:1753466620915156. [PMID: 32552611 PMCID: PMC7303773 DOI: 10.1177/1753466620915156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with an epidermal growth factor receptor (EGFR) mutation often initially respond to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment but may acquire drug resistance due to multiple factors. MicroRNAs are a class of small noncoding and endogenous RNA molecules that may play a role in overcoming the resistance. MATERIALS AND METHODS In this study, we explored and validated, through in vitro experiments and in vivo models, the ability of a combination treatment of EGFR-TKI, namely gefitinib, and a microRNA mimic, miR-30a-5p, to overcome drug resistance through regulation of the insulin-like growth factor receptor-1 (IGF1R) and hepatocyte growth factor receptor signaling pathways, which all converge on phosphatidylinositol 3 kinase (PI3K), in NSCLC. First, we examined the hypothesized mechanisms of drug resistance in H1650, H1650-acquired gefitinib-resistance (H1650GR), H1975, and H460 cell lines. Next, we investigated a potential combination treatment approach to overcome acquired drug resistance in the H1650GR cell line and an H1650GR cell implanted mouse model. RESULTS Dual inhibitors of EGFR and IGF1R significantly lowered the expression levels of phosphorylated protein kinase B (p-AKT) and phosphorylated mitogen-activated protein kinase (p-ERK) compared with the control group in all cell lines. With the ability to repress PI3K expression, miR-30a-5p mimics induced cell apoptosis, and inhibited cell invasion and migration in the treated H1650GR cell line. CONCLUSION Gefitinib, combined with miR-30a-5p mimics, effectively suppressed the growth of H1650GR-induced tumor in xenografts. Hence, a combination therapy of gefitinib and miR-30a-5p may play a critical role in overcoming acquired resistance to EGFR-TKIs. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Fengfeng Wang
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Fei Meng
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - William C.S. Cho
- Department of Clinical Oncology, Queen Elizabeth
Hospital, Hong Kong, P.R. China
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal
Experiment and Institute of Animal Model for Human Disease, Wuhan University
School of Medicine, Wuhan, P.R. China
| | - Lawrence W.C. Chan
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Y902, 9/F, Lee Shau Kee Building,
Kowloon, Hong Kong, P.R. China
| |
Collapse
|
30
|
Wang C, Liu E, Li W, Cui J, Li T. MiR-3188 Inhibits Non-small Cell Lung Cancer Cell Proliferation Through FOXO1-Mediated mTOR-p-PI3K/AKT-c-JUN Signaling Pathway. Front Pharmacol 2018; 9:1362. [PMID: 30618730 PMCID: PMC6297856 DOI: 10.3389/fphar.2018.01362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
This study investigated the role of miR-3188 on the proliferation of non-small cell lung cancer cells and its relationship to FOXO1-modulated feedback loop. Two non-small cell lung cancer (NSCLC) cell lines A549 and H1299 were used. RNA silencing was achieved by lentiviral transfection. Cell proliferation was assessed by immunohistochemical staining of Ki67 and PCNA, Edu incorporation, and colony formation assay. Western blotting was used to examine expression of FOXO1, mTOR, p-mTOR, CCND1, p21, c-JUN, AKT, pAKT, PI3K, p-PI3K, and p27 proteins. It was found that miR-3188 reduced cell proliferation in NSCLC cells. Molecular analyses indicated that the effect of mammalian target of rapamycin (mTOR) was directly mediated by miR-3188, leading to p-PI3K/p-AKT/c-JUN inactivation. The inhibition of this signaling pathway further caused cell-cycle suppression. Moreover, FOXO1 was found to be involved in regulating the interaction of miR-3188 and mTOR through p-PI3K/p-AKT/c-JUN signaling pathway. Taken together, our study demonstrated that miR-3188 interacts with mTOR and FOXO1 to inhibit NSCLC cell proliferation through a mTOR-p-PI3K/AKT-c-JUN signaling pathway. Therefore, miR-3188 might be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Enqi Liu
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Wen Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Jue Cui
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Tongxiang Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| |
Collapse
|
31
|
Targeting the DNA-PK complex: Its rationale use in cancer and HIV-1 infection. Biochem Pharmacol 2018; 160:80-91. [PMID: 30529192 DOI: 10.1016/j.bcp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
The DNA-PK complex is the major component of the predominant mechanism of DSB repair in humans. In addition, this complex is involved in many other processes such as DNA recombination, genome maintenance, apoptosis and transcription regulation. Several studies have linked the decrease of the DNA-PK activity with cancer initiation, due to defects in the repair. On another hand, higher DNA-PK expression and activity have been observed in various other tumor cells and have been linked with a decrease of the efficiency of anti-tumor drugs. It has also been shown that DNA-PK is critical for the integration of the HIV-1 DNA into the cell host genome and promotes replication and transcription of the virus. Targeting this complex makes therefore sense to treat these two pathologies. However, according to the status of HIV-1 replication (active versus latent replication) or to the tumor grade cells (initiation versus metastasis), the way to target this DNA-PK complex might be rather different. In this review, we discuss the importance of DNA-PK complex in two major pathologies i.e. HIV-1 infection and cancer, and the rationale use of therapies aiming to target this complex.
Collapse
|
32
|
Swellam M, Mahmoud MS, Hashim M, Hassan NM, Sobeih ME, Nageeb AM. Clinical aspects of circulating miRNA‐335 in breast cancer patients: A prospective study. J Cell Biochem 2018; 120:8975-8982. [DOI: 10.1002/jcb.28168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Menha Swellam
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Magda Sayed Mahmoud
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Maha Hashim
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Naglaa M Hassan
- Department of Clinical Pathology National Cancer Institute Cairo Egypt
| | | | - Amira M Nageeb
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| |
Collapse
|
33
|
Reprogramming Cells for Synergistic Combination Therapy with Nanotherapeutics against Uveal Melanoma. Biomimetics (Basel) 2018; 3:biomimetics3040028. [PMID: 31105250 PMCID: PMC6352695 DOI: 10.3390/biomimetics3040028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and around half of the patients develop metastasis and die shortly after because of the lack of effective therapies for metastatic UM. Consequently, new therapeutic approaches to this disease are welcome. In this regard, microRNAs have been shown to have a key role in neoplasia progression and have the potential to be used as therapeutic tools. In addition, in different cancers including UM, a particular microRNA signature appears that is different from healthy cells. Thus, restoring the regular levels of microRNAs could restore the normal behavior of cells. In this study, four microRNAs downregulated in UM have been chosen to reprogram cancer cells, to promote cell death or increase their sensitivity to the chemotherapeutic SN38. Furthermore, to improve the internalization, stability and/or solubility of the therapeutic molecules employed in this approach, gold nanoparticles (AuNPs) were used as carriers. Remarkably, this study found a synergistic effect when the four oligonucleotides were employed and when the chemotherapeutic drug was added.
Collapse
|
34
|
Lleonart ME, Abad E, Graifer D, Lyakhovich A. Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells. Antioxid Redox Signal 2018; 28:1066-1079. [PMID: 28683561 DOI: 10.1089/ars.2017.7223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: A fraction of tumorigenic cells, also known as tumor initiating or cancer stem cells (CSCs), is thought to drive tumor growth, metastasis, and chemoresistance. However, little is known regarding mechanisms that convey relevant pathways contributing to their self-renewal, proliferation, and differentiation abilities. Recent Advances: Recent works on CSCs provide evidence on the role of redox disruption and regulation of autophagic flux. This has been linked to increased DNA repair capacity and chemoresistance. Critical Issues: The current review summarizes the most recent studies assessing the role of redox homeostasis, autophagy, and chemoresistance in CSCs, including some novel findings on microRNAs and their role in horizontal transfer within cancer cell populations. Future Directions: Rational anticancer therapy and prevention should rely on the fact that cancer is a redox disease with the CSCs being the apex modulated by redox-mediated autophagy. Antioxid. Redox Signal. 28, 1066-1079.
Collapse
Affiliation(s)
- Matilde E Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Etna Abad
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Dmitry Graifer
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain.,Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,ICRC-FNUSA, International Clinical Research Center and St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
35
|
Jiang LP, He CY, Zhu ZT. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget 2017; 8:23675-23689. [PMID: 28423589 PMCID: PMC5410336 DOI: 10.18632/oncotarget.15644] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022] Open
Abstract
This study aims to explore the effects of microRNA-21 (miR-21) on radiosensitivity in non-small cell lung cancer (NSCLC) by targeting programmed cell deanth 4 (PDCD4) and regulating PI3K/AKT/mTOR signaling pathway. Cancer tissues and adjacent normal tissues were collected from 97 NSCLC patients who received a standard radiotherapy regimen. TUNEL assay was applied to determine cell apoptosis in tissues. The qRT-PCR assay was used to detect the expressions of miR-21 expression and PDCD4 mRNA. The protein expressions of PDCD4 and PI3K/AKT/mTOR signaling pathway-related proteins were determined by Western blotting. Colony formation assay was used to observe the sensitivity to radiotherapy of NSCLC cells. Flow cytometry was adopted to testify cell apoptosis. Compared with adjacent normal tissues, miR-21 expression was significantly increased and the mRNA and protein expressions of PDCD4 were decreased in NSCLC tissues. Higher miR-21 expression was associated with attenuated radiation efficacy and shorter median survival time. PDCD4 was the target gene of miR-21. The miR-21 mimics and siRNA-PDCD4 decreased the sensitivity to radiotherapy and cell apoptosis of A549 and H1299 cells and activated PI3K/AKT/mTOR pathway. The sensitivity of A549 and H1299 cells was strengthened in the miR-21 inhibitors group and the PI3K/AKT/mTOR inhibitors group. The siRNA-PDCD4 could reverse the effects of miR-21 inhibitors on sensitivity to radiotherapy and cell apoptosis of NSCLC cells. Our findings provide strong evidence that miR-21 could inhibit PDCD4 expression and activate PI3K/AKT/mTOR signaling pathway, thereby affecting the radiation sensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Li-Peng Jiang
- Department of Radiation Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Zhi-Tu Zhu
- Department of Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| |
Collapse
|
36
|
Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm 2017; 530:387-400. [PMID: 28774852 DOI: 10.1016/j.ijpharm.2017.07.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs are gaining rapid attention as promising targets for cancer treatment; however, efficient delivery of therapeutic miRNA or anti-miRNA into cancer cells remains a major challenge. Our previous work identified miR-191 as an oncogenic miRNA overexpressed in breast cancer that assists in progression of malignant transformation. Thus, inhibition of miR-191 using antisense miR-191 (anti-miR-191) has immense therapeutic potential. Here, we have developed a stearylamine (SA) based cationic liposome for delivery of miR-191 inhibitor (anti-miR-191), and studied its efficacy in breast cancer cells (MCF-7 and ZR-75-1) in culture. SA liposomes alone inhibited cancer cell growth with lesser IC50s (50% inhibitory concentration) values as compared to normal mouse fibroblast cells (L929). The efficient delivery of anti-miR-191 in SA liposome complex was found to be highly effective in killing the cancer cells than a comparable dose of SA free anti-miR-191 liposome complex. The formulation also showed negligible cytotoxicity in human erythrocytes. Combined treatment of SA liposome with anti-miR-191 markedly enhanced apoptotic cell death and suppressed the migration of cancer cells in vitro. Notably, anti-miR-191 loaded SA liposome complex increased chemosensitivity of breast cancer cells to currently used anti-cancer drugs (doxorubicin or cisplatin) in free form. Our work demonstrates that anti-miR-191 loaded in SA liposome complex has promising clinical application for breast cancer therapy.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vinoth Rajendran
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Prahlad C Ghosh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
37
|
MiroRNA-127-3p targets XRCC3 to enhance the chemosensitivity of esophageal cancer cells to a novel phenanthroline-dione derivative. Int J Biochem Cell Biol 2016; 79:158-167. [PMID: 27590853 DOI: 10.1016/j.biocel.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs are small non-coding RNAs with 18-22 nucleotides in length and have been proposed to function in various biological processes by targeting genes for post-transcriptional degradation via their 3' untranslated region. Moreover, they have been suggested to improve the chemosensitivity in a panel of tumors. However, the biological functions of microRNA-127-3p in esophageal carcinogenesis are still enigmatic. Thus, in the study, we firstly analyzed the roles of microRNA-127-3p in regulating the growth of esophageal cancer cells both in vitro and in vivo. Afterwards, using the microRNA-targeted gene prediction software and the dual-luciferase reporter assays, we confirmed that microRNA-127-3p specifically reduced the expression of X-ray repair complementing defective repair in Chinese hamster cells 3, one of RAD51 recombinase paralogs, at both mRNA and protein levels. Furthermore, using the homologous recombination repair and non-homologous end joining repair reporter systems, we found that microRNA-127-3p specifically compromised the homologous recombination repair and significantly increased DNA double strand breaks in cells. Besides, it statistically increased the chemosensitivity of esophageal cancer cells to a novel phenanthroline-dione derivative in vivo by mechanistically impairing the recruitment of RAD51 to the damage sites. In summary, our findings not only suggest that microRNA-127-3p can be used as a predictor for evaluating the development of esophageal carcinoma, but also show that it can be used to increase the chemosensitivity of esophageal cancer patients to the phenanthroline-dione derivative, which might be a potential anticancer candidate in the future.
Collapse
|
38
|
Malik A, Sultana M, Qazi A, Qazi MH, Parveen G, Waquar S, Ashraf AB, Rasool M. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update. Anal Cell Pathol (Amst) 2016; 2016:6146595. [PMID: 26998418 PMCID: PMC4779816 DOI: 10.1155/2016/6146595] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/01/2016] [Indexed: 11/17/2022] Open
Abstract
Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.
Collapse
Affiliation(s)
- Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Misbah Sultana
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Aamer Qazi
- Center for Research in Molecular Medicine (CRiMM), The University of Lahore, Pakistan
| | - Mahmood Husain Qazi
- Center for Research in Molecular Medicine (CRiMM), The University of Lahore, Pakistan
| | - Gulshan Parveen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Abdul Basit Ashraf
- University College of Medicine and Dentistry, The University of Lahore, Pakistan
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|