1
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
2
|
Bentahar MC, Benabdelmoumene D, Robert V, Dahmouni S, Qadi WSM, Bengharbi Z, Langella P, Benbouziane B, Al-Olayan E, Dawoud EAD, Mediani A. Evaluation of Probiotic Potential and Functional Properties of Lactobacillus Strains Isolated from Dhan, Traditional Algerian Goat Milk Butter. Foods 2024; 13:3781. [PMID: 39682853 DOI: 10.3390/foods13233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Goat milk butter, locally known as "Dhan", from the Sfisfa region of Algeria, holds significant cultural and economic value. This study investigates the probiotic properties of lactic acid bacteria (LAB) present in Dhan, focusing particularly on Lactobacillus strains. Molecular identification using 16S rRNA revealed a dominance of Levilactobacillus brevis and Lactiplantibacillus plantarum, forming a substantial part of the bacterial profile. Three LAB isolates (DC01-A, DC04, and DC06) were selected from fresh samples, and rigorous analyses were performed to evaluate their probiotic properties. Safety assessments confirmed the absence of gelatinase, DNase, and haemolytic activities in all isolates. The isolates demonstrated high tolerance to bile salts and acidic conditions, along with the ability to survive simulated gastrointestinal digestion. Notably, strain DC06 exhibited exceptional survival at low pH (1.5) and high bile salt concentrations (0.15-0.3%). All isolates showed substantial growth in MRS medium with 2% phenol, although growth was significantly decreased at 5% phenol. Furthermore, our strains exhibited high adhesion rates to various solvents, demonstrating their potential for strong interaction with cell membranes. Specifically, adhesion to chloroform was observed at 98.26% for DC01-A, 99.30% for DC04, and 99.20% for DC06. With xylene, the adhesion rates were 75.94% for DC01-A, 61.13% for DC04, and 76.52% for DC06. The LAB strains demonstrated impressive growth in ethanol concentrations up to 12%, but their tolerance did not exceed this concentration. They also exhibited robust growth across temperatures from 10 °C to 37 °C, with strains DC04 and DC06 able to proliferate at 45 °C, though none survived at 50 °C. Additionally, the isolates showed significant resistance to oxidative stress induced by hydrogen peroxide (H2O2) and displayed medium to high autolytic activity, with rates of 50.86%, 37.53%, and 33.42% for DC01-A, DC04, and DC06, respectively. The cell-free supernatant derived from strain DC04 exhibited significant antimicrobial activity against the tested pathogens, while strain DC06 demonstrated moderate antioxidant activity with the highest DPPH scavenging rate at 68.56%, compared to the probiotic reference strain LGG at 61.28%. These collective findings not only suggest the probiotic viability of LAB strains found in Dhan but also highlight the importance of traditional food practises in contributing to health and nutrition. Consequently, this study supports the potential of traditional Dhan butter as a functional food and encourages further exploration of its health benefits.
Collapse
Affiliation(s)
- Mohamed Cherif Bentahar
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Djilali Benabdelmoumene
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Véronique Robert
- Institut National de la Recherche Agronomique, Micalis Institute, UMR 1319 MICALIS, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Said Dahmouni
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Wasim S M Qadi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43650, Malaysia
| | - Zineb Bengharbi
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Philippe Langella
- Institut National de la Recherche Agronomique, Micalis Institute, UMR 1319 MICALIS, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bouasria Benbouziane
- Bioeconomy Laboratory, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
3
|
Zhang A, Ou M, Wu P, Zheng K, Zhang H, Yu Y, Guo Y, Zhang T, Pan D, Wu Z. Coupled Effect of Nutritional Food Molecules and Lactobacillus reuteri Surface Protein Interaction on the Bacterial Gastrointestinal Tolerance. Foods 2024; 13:3685. [PMID: 39594100 PMCID: PMC11593405 DOI: 10.3390/foods13223685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Lactobacillus reuteri, which is present in fermented foods, can produce LPxTG motif proteins (LMPs) to help the strain resist gastrointestinal fluid environmental stress and enhance the adherence and colonizing properties. Intestinal nutrient small molecules can interact with LMPs and cooperate with Lactobacillus to exert probiotic effects in the host intestine. However, the mechanism of their correlation with gastrointestinal tolerance needs to be further studied. In this study, different kinds of nutritional food molecules, such as intestinal phenols, sugars, and acids, were screened and the interaction between the LPxTG proteins and small molecules was explored via the molecular docking approach. The docking results showed that phenols and oligosaccharides were more likely to bind to the LPxTG protein (B3XKV5), with the benzene ring, phenolic hydroxyl group, and glycosidic bond in the small molecule more easily binding to the active site of B3XKV5. Furthermore, the gastrointestinal tolerance was enhanced under the rutin, myricetin, quercetin phenols, and stachyose-treated L. reuteri strain groups, especially the phenol group, which revealed the relationship between the molecular interaction of the strain with the small molecules and strain tolerance mechanism. All the findings illustrated the gastrointestinal tolerance escape effect of the Lactobacillus strain under enriched intestinal nutrient small molecular conditions, and they also provide insight regarding the small molecules for the Lactobacillus strain under abnormal growth environments.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Mingjuan Ou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Peng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Kaige Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Haiqian Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Yixing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Yuxing Guo
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China;
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (A.Z.); (P.W.); (K.Z.); (H.Z.); (Y.Y.); (T.Z.); (D.P.)
| |
Collapse
|
4
|
Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: Recent insights from animal models. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2722-2737. [PMID: 38666595 DOI: 10.1177/13623613241246911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental disorder characterized by a wide range of behavioral alterations, including impaired social interaction and repetitive behaviors. Numerous pharmacological interventions have been developed for autism spectrum disorder, often proving ineffective and accompanied by a multitude of side effects. The gut microbiota is the reservoir of bacteria inhabiting our gastrointestinal tract. The gut microbial alterations observed in individuals with autism spectrum disorder, including elevated levels of Bacteroidetes, Firmicutes, and Proteobacteria, as well as reduced levels of Bifidobacterium, provide a basis for further investigation into the role of the gut microbiota in autism spectrum disorder. Recent preclinical studies have shown favorable outcomes with probiotic therapy, including improvements in oxidative stress, anti-inflammatory effects, regulation of neurotransmitters, and restoration of microbial balance. The aim of this review is to explore the potential of probiotics for the management and treatment of autism spectrum disorder, by investigating insights from recent studies in animals.
Collapse
Affiliation(s)
- Navid Golbaghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Najari
- School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay, France
| |
Collapse
|
5
|
Xu Z, Wu N, Chan SW. How Do Socio-Demographic Factors, Health Status, and Knowledge Influence the Acceptability of Probiotics Products in Hong Kong? Foods 2024; 13:2971. [PMID: 39335899 PMCID: PMC11431766 DOI: 10.3390/foods13182971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, due to growing interest in gut health, the potential benefits of probiotics on the gut have received much attention. Probiotics, now readily available in both dietary supplements and a variety of foods, have become a focal point of consumer health choices. This study aims to explore the impact of consumer-related factors, including socio-demographic profiles, health status, and probiotics knowledge, on the acceptance of probiotics products in Hong Kong. A total of 385 participants engaged in a survey, providing data for an in-depth analysis of how these factors influence attitudes toward probiotics. Findings revealed a general confidence in the safety of probiotics products among respondents; however, there was a noticeable gap in probiotics understanding. The study highlighted a correlation between probiotics knowledge and specific socio-demographic attributes, with higher educational attainment positively linked to greater probiotics awareness. Furthermore, the research indicated that women exhibit higher health consciousness and a greater propensity for probiotics consumption compared to men. Consequently, promoting enhanced probiotics education and fostering increased health awareness are crucial steps to prevent the misuse of probiotics and optimize health outcomes.
Collapse
Affiliation(s)
- Zilin Xu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nan Wu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Shun Wan Chan
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Ozma MA, Ghotaslou R, Asgharzadeh M, Abbasi A, Rezaee MA, Kafil HS. Cytotoxicity assessment and antimicrobial effects of cell-free supernatants from probiotic lactic acid bacteria and yeast against multi-drug resistant Escherichia coli. Lett Appl Microbiol 2024; 77:ovae084. [PMID: 39237462 DOI: 10.1093/lambio/ovae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The antibacterial, antibiofilm, and cytotoxicity activity of cell-free supernatants (CFSs) from probiotics, including Lactobacillus plantarum, Bifidobacterium bifidum, and Saccharomyces cerevisiae against multi-drug resistant Escherichia coli evaluated in current research. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the CFSs were determined by analyzing inhibition zone formation using agar disk diffusion for antibacterial activity, microtiter plate for biofilm analysis, and auto-aggregation were done. CFSs substances were analyzed by GC-MS. The MTT assay on HEK293 cells investigated CFS's influence on cell viability. CFSs were examined for biofilm-related virulence genes, including aggR and fimH using real-time polymerase chain reaction (real-time PCR). All CFSs had bacteriostatic and bactericidal effects. The B. bifidum exhibited the highest antibiofilm activity compared to the others. Bifidobacterium bifidum, L. plantarum, and S. cerevisiae produce 19, 16, and 11 mm inhibition zones against E. coli, respectively. GC-MS indicated that Hydroxyacetone, 3-Hydroxybutyric acid, and Oxime-methoxy-phenyl-dominated CFSs from L. plantarum, B. bifidum, and S. cerevisiae CFSs, respectively. The MTT test demonstrated a cell viability rate of over 90%. Statistically, adding all CFSs lowered the relative expression of both aggR and fimH virulence genes.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
7
|
Vidya Bernhardt G, Shivappa P, R Pinto J, Ks R, Ramakrishna Pillai J, Kumar Srinivasamurthy S, Paul Samuel V. Probiotics-role in alleviating the impact of alcohol liver disease and alcohol deaddiction: a systematic review. Front Nutr 2024; 11:1372755. [PMID: 39290562 PMCID: PMC11406471 DOI: 10.3389/fnut.2024.1372755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Background There are few efficient treatment options for alcohol addiction, which continues to be a serious public health concern. The possible contribution of gut microbiota to the onset and progression of alcohol addiction has been brought to light by recent studies. Probiotics have become a cutting-edge intervention in the treatment of alcohol consumption disorder because of its favorable effects on gut health. The purpose of this systematic review is to assess the body of research on the advantages of probiotics in treating alcoholism and associated neuroinflammatory conditions. Methods To find pertinent research published from January 2012 to 2023, a thorough search of electronic databases, including PubMed, Scopus, Google Scholar and Web of Science, was carried out. Included were studies looking at how probiotics affect neuroinflammation, gut- brain axis regulation, alcohol addiction, and related behaviors. Findings Several investigations have shown how beneficial probiotics are in reducing systemic inflammation and alcoholic liver disease (ALD). Probiotic treatments successfully corrected the imbalance of microbiota, decreased intestinal permeability, and stopped the passage of bacterial constituents such lipopolysaccharides (LPS) into the bloodstream. Additionally, probiotics helped to regulate neurotransmitter pathways, especially those connected to GABA, glutamate, and dopamine, which are intimately linked to behaviors related to addiction. Furthermore, it was shown that probiotics altered the expression of neurotransmitter signaling and dopamine receptors. Conclusion There is strong evidence from this systematic study that probiotics have potential advantages in treating alcohol addiction. The potential of probiotic therapies is demonstrated by the way they modulate important neurotransmitter pathways implicated in addiction, decrease neuroinflammation, and restore the balance of gut flora. To fully investigate the therapeutic potential of probiotics in treating alcohol addiction and enhancing the general wellbeing of those afflicted by this condition, more research is necessary.
Collapse
Affiliation(s)
- Grisilda Vidya Bernhardt
- Department of Biochemistry, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Pooja Shivappa
- Department of Biochemistry, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Janita R Pinto
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rashmi Ks
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, RAKCOPS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Vijay Paul Samuel
- Department of Anatomy, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|
8
|
Nie X, Zhang T, Huang X, Gu C, Zuo W, Fu LJ, Dong Y, Liu H. Novel therapeutic targets: bifidobacterium-mediated urea cycle regulation in colorectal cancer. Cell Biol Toxicol 2024; 40:64. [PMID: 39096436 PMCID: PMC11297826 DOI: 10.1007/s10565-024-09889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/03/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is a widespread malignancy with a complex and not entirely elucidated pathogenesis. This study aims to explore the role of Bifidobacterium in the urea cycle (UC) and its influence on the progression of CRC, a topic not extensively studied previously. EXPERIMENTAL APPROACH Utilizing both bioinformatics and experimental methodologies, this research involved analyzing bacterial abundance in CRC patients in comparison to healthy individuals. The study particularly focused on the abundance of BA. Additionally, transcriptomic data analysis and cellular experiments were conducted to investigate the impact of Bifidobacterium on ammonia metabolism and mitochondrial function, specifically examining its regulation of the key UC gene, ALB. KEY RESULTS The analysis revealed a significant decrease in Bifidobacterium abundance in CRC patients. Furthermore, Bifidobacterium was found to suppress ammonia metabolism and induce mitochondrial dysfunction through the regulation of the ALB gene, which is essential in the context of UC. These impacts contributed to the suppression of CRC cell proliferation, a finding corroborated by animal experimental results. CONCLUSIONS AND IMPLICATIONS This study elucidates the molecular mechanism by which Bifidobacterium impacts CRC progression, highlighting its role in regulating key metabolic pathways. These findings provide potential targets for novel therapeutic strategies in CRC treatment, emphasizing the importance of microbiota in cancer progression.
Collapse
Affiliation(s)
- Xusheng Nie
- Department of Gastroenterology, Yunyang County People's Hospital, Chongqing, 404599, China
| | - Tingting Zhang
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China
| | - Xiumei Huang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Chongqi Gu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Wei Zuo
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Yiping Dong
- Department of Digital Medicine, Department of Bioengineering and Imaging, Army Medical University, Chongqing, 400038, China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China.
| |
Collapse
|
9
|
Wu Q, Kan J, Cui Z, Ma Y, Liu X, Dong R, Huang D, Chen L, Du J, Fu C. Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38922612 DOI: 10.1080/10408398.2024.2369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Yuchen Ma
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Ruifang Dong
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
10
|
Zhao L, Li X, Wang Y, Yang Q, Jiang X, Zhao R, Chen H, Zhang Y, Ran J, Chen W, Wei Z, Wang H. Resistance role of Lactobacillus sp. and Lactococcus sp. to copper ions in healthy children's intestinal microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134059. [PMID: 38503209 DOI: 10.1016/j.jhazmat.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yibin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaobing Jiang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yiping Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanrong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zihan Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
11
|
Zhang J, Ren X, Wang S, Liu R, Shi B, Dong H, Wu Q. Microbial interventions in yak colibacillosis: Lactobacillus-mediated regulation of intestinal barrier. Front Cell Infect Microbiol 2024; 14:1337439. [PMID: 38390621 PMCID: PMC10883308 DOI: 10.3389/fcimb.2024.1337439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The etiology of Escherichia coli in yaks, along with its drug resistance, results in economic losses within the yak breeding industry. The utilization of lactic acid bacteria treatment has emerged as a viable alternative to antibiotics in managing colibacillosis. Methods To elucidate the therapeutic mechanisms of Lactobacillus against Escherichia coli-induced intestinal barrier damage in yaks, we employed yak epithelial cells as the experimental model and established a monolayer epithelial barrier using Transwell. The study encompassed four groups: a control group, a model group (exposed to E. coli O78), a low-dose Lactobacillus group (E. coli O78 + 1 × 105CFU LAB), and a high-dose Lactobacillus group (E. coli O78 + 1 × 107CFU LAB). Various techniques, including transmembrane resistance measurement, CFU counting, RT-qPCR, and Western Blot, were employed to assess indicators related to cell barrier permeability and tight junction integrity. Results In the Model group, Escherichia coli O78 significantly compromised the permeability and tight junction integrity of the yak epithelial barrier. It resulted in decreased transmembrane resistance, elevated FD4 flux, and bacterial translocation. Furthermore, it downregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while upregulating the mRNA expression and protein expression of FABP2 and Zonulin, thereby impairing intestinal barrier function. Contrastingly, Lactobacillus exhibited a remarkable protective effect. It substantially increased transmembrane resistance, mitigated FD4 flux, and reduced bacterial translocation. Moreover, it significantly upregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while downregulating the mRNA and protein expression of FABP2 and Zonulin. Notably, high-dose LAB demonstrated superior regulatory effects compared to the low-dose LAB group. Discussion In conclusion, our findings suggest that Lactobacillus holds promise in treating yak colibacillosis by enhancing mucin and tight junction protein expression. Furthermore, we propose that Lactobacillus achieves these effects through the regulation of Zonulin.
Collapse
Affiliation(s)
- Jingbo Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiaoli Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|