1
|
Tumor Radiosensitization by Gene Electrotransfer-Mediated Double Targeting of Tumor Vasculature. Int J Mol Sci 2023; 24:ijms24032755. [PMID: 36769077 PMCID: PMC9917180 DOI: 10.3390/ijms24032755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor β co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.
Collapse
|
2
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
3
|
Savarin M, Kamensek U, Znidar K, Todorovic V, Sersa G, Cemazar M. Evaluation of a Novel Plasmid for Simultaneous Gene Electrotransfer-Mediated Silencing of CD105 and CD146 in Combination with Irradiation. Int J Mol Sci 2021; 22:ijms22063069. [PMID: 33802812 PMCID: PMC8002395 DOI: 10.3390/ijms22063069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Targeting tumor vasculature through specific endothelial cell markers represents a promising approach for cancer treatment. Here our aim was to construct an antibiotic resistance gene-free plasmid encoding shRNAs to simultaneously target two endothelial cell markers, CD105 and CD146, and to test its functionality and therapeutic potential in vitro when delivered by gene electrotransfer (GET) and combined with irradiation (IR). Functionality of the plasmid was evaluated by determining the silencing of the targeted genes using qRT-PCR. Antiproliferative and antiangiogenic effects were determined by the cytotoxicity assay tube formation assay and wound healing assay in murine endothelial cells 2H-11. The functionality of the plasmid construct was also evaluated in malignant melanoma tumor cell line B16F10. Additionally, potential activation of immune response was measured by induction of DNA sensor STING and proinflammatory cytokines by qRT-PCR in endothelial cells 2H-11. We demonstrated that the plasmid construction was successful and can efficiently silence the expression of the two targeted genes. As a consequence of silencing, reduced migration rate and angiogenic potential was confirmed in 2H-11 endothelial cells. Furthermore, induction of DNA sensor STING and proinflammatory cytokines were determined, which could add to the therapeutic effectiveness when used in vivo. To conclude, we successfully constructed a novel plasmid DNA with two shRNAs, which holds a great promise for further in vivo testing.
Collapse
Affiliation(s)
- Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Correspondence: (M.S.); (M.C.)
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
- Correspondence: (M.S.); (M.C.)
| |
Collapse
|
4
|
Jacobs L, De Smidt E, Geukens N, Declerck P, Hollevoet K. DNA-Based Delivery of Checkpoint Inhibitors in Muscle and Tumor Enables Long-Term Responses with Distinct Exposure. Mol Ther 2020; 28:1068-1077. [PMID: 32101701 DOI: 10.1016/j.ymthe.2020.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/08/2020] [Indexed: 12/17/2022] Open
Abstract
Checkpoint-inhibiting antibodies elicit impressive clinical responses, but still face several issues. The current study evaluated whether DNA-based delivery can broaden the application of checkpoint inhibitors, specifically by pursuing cost-efficient in vivo production, facilitating combination therapies, and exploring administration routes that lower immune-related toxicity risks. We therefore optimized plasmid-encoded anti-CTLA-4 and anti-PD-1 antibodies, and studied their pharmacokinetics and pharmacodynamics when delivered alone and in combination via intramuscular or intratumoral electroporation in mice. Intramuscular electrotransfer of these DNA-based antibodies induced complete regressions in a subcutaneous MC38 tumor model, with plasma concentrations up to 4 and 14 μg/mL for anti-CTLA-4 and anti-PD-1 antibodies, respectively, and antibody detection for at least 6 months. Intratumoral antibody gene electrotransfer gave similar anti-tumor responses as the intramuscular approach. Antibody plasma levels, however, were up to 70-fold lower and substantially more transient, potentially improving biosafety of the expressed checkpoint inhibitors. Intratumoral delivery also generated a systemic anti-tumor response, illustrated by moderate abscopal effects and prolonged protection of cured mice against a tumor rechallenge. In conclusion, intramuscular and intratumoral DNA-based delivery of checkpoint inhibitors both enabled long-term anti-tumor responses despite distinct systemic antibody exposure, highlighting the potential of the tumor as delivery site for DNA-based therapeutics.
Collapse
Affiliation(s)
- Liesl Jacobs
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elien De Smidt
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium; PharmAbs - The KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nick Geukens
- PharmAbs - The KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium; PharmAbs - The KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020; 23:231-247. [PMID: 31897911 PMCID: PMC7160077 DOI: 10.1007/s10456-019-09703-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Endoglin (CD105) is an auxiliary receptor for members of the TFG-β superfamily. Whereas it has been demonstrated that the deficiency of endoglin leads to minor and defective angiogenesis, little is known about the effect of its increased expression, characteristic of several types of cancer. Angiogenesis is essential for tumor growth, so high levels of proangiogenic molecules, such as endoglin, are supposed to be related to greater tumor growth leading to a poor cancer prognosis. However, we demonstrate here that endoglin overexpression do not stimulate sprouting or vascularization in several in vitro and in vivo models. Instead, steady endoglin overexpression keep endothelial cells in an active phenotype that results in an impairment of the correct stabilization of the endothelium and the recruitment of mural cells. In a context of continuous enhanced angiogenesis, such as in tumors, endoglin overexpression gives rise to altered vessels with an incomplete mural coverage that permit the extravasation of blood. Moreover, these alterations allow the intravasation of tumor cells, the subsequent development of metastases and, thus, a worse cancer prognosis.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Cristina Egido-Turrión
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura Silva-Sousa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular Y Celular del Cáncer. CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model. Cancers (Basel) 2019; 11:cancers11121889. [PMID: 31783695 PMCID: PMC6966465 DOI: 10.3390/cancers11121889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability) rendered the TS/A cell line suitable as a preclinical model for studies on tumor-host interactions and for gene therapy approaches. The integrated biological profile of TS/A resulting from the review of the literature could be a path towards the description of a precision experimental model of mammary cancer.
Collapse
|
7
|
Egorova AA, Shtykalova SV, Maretina MA, Sokolov DI, Selkov SA, Baranov VS, Kiselev AV. Synergistic Anti-Angiogenic Effects Using Peptide-Based Combinatorial Delivery of siRNAs Targeting VEGFA, VEGFR1, and Endoglin Genes. Pharmaceutics 2019; 11:E261. [PMID: 31174285 PMCID: PMC6631635 DOI: 10.3390/pharmaceutics11060261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a process of new blood vessel formation, which plays a significant role in carcinogenesis and the development of diseases associated with pathological neovascularization. An important role in the regulation of angiogenesis belongs to several key pathways such as VEGF-pathways, TGF-β-pathways, and some others. Introduction of small interfering RNA (siRNA) against genes of pro-angogenic factors is a promising strategy for the therapeutic suppression of angiogenesis. These siRNA molecules need to be specifically delivered into endothelial cells, and non-viral carriers modified with cellular receptor ligands can be proposed as perspective delivery systems for anti-angiogenic therapy purposes. Here we used modular peptide carrier L1, containing a ligand for the CXCR4 receptor, for the delivery of siRNAs targeting expression of VEGFA, VEGFR1 and endoglin genes. Transfection properties of siRNA/L1 polyplexes were studied in CXCR4-positive breast cancer cells MDA-MB-231 and endothelial cells EA.Hy926. We have demonstrated the efficient down-regulation of endothelial cells migration and proliferation by anti-VEGFA, anti-VEGFR1, and anti-endoglin siRNA-induced silencing. It was found that the efficiency of anti-angiogenic treatment can be synergistically improved via the combinatorial delivery of anti-VEGFA and anti-VEGFR1 siRNAs. Thus, this approach can be useful for the development of therapeutic angiogenesis inhibition.
Collapse
Affiliation(s)
- Anna A Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Sofia V Shtykalova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
| | - Marianna A Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Dmitry I Sokolov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Sergei A Selkov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
| | - Anton V Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
8
|
Znidar K, Bosnjak M, Jesenko T, Heller LC, Cemazar M. Upregulation of DNA Sensors in B16.F10 Melanoma Spheroid Cells After Electrotransfer of pDNA. Technol Cancer Res Treat 2018; 17:1533033818780088. [PMID: 29879868 PMCID: PMC6009088 DOI: 10.1177/1533033818780088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased expression of cytosolic DNA sensors, a category of pattern recognition receptor, after control plasmid DNA electrotransfer was observed in our previous studies on B16.F10 murine melanoma cells. This expression was correlated with the upregulation of proinflammatory cytokines and chemokines and was associated with cell death. Here, we expanded our research to include the influence of features of cells in a 3-dimensional environment, which better represents the tumors' organization in vivo. Our results show that lower number of cells were transfected in spheroids compared to 2-dimensional cultures, that growth was delayed after electroporation alone or after electrotransfer of plasmid DNA, and that DNA sensors DDX60, DAI/ZBP1, and p204 were upregulated 4 hours and 24 hours after electrotransfer of plasmid DNA. Moreover, the cytokines interferon β and tumor necrosis factor α were also upregulated but only 4 hours after electrotransfer of plasmid DNA. Thus, our results confirm the results obtained in 2-dimensional cell cultures demonstrating that electrotransfer of plasmid DNA to tumor cells in spheroids also upregulated cytosolic DNA sensors and cytokines.
Collapse
Affiliation(s)
- Katarina Znidar
- 1 Faculty of Health Sciences, University of Primorska, Koper, Slovenia
| | - Masa Bosnjak
- 2 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- 2 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Loree C Heller
- 3 Frank Reidy Research Center of Bioelectrics, Old Dominion University, Norfolk, VA, USA.,4 School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion, University, Norfolk, VA, USA
| | - Maja Cemazar
- 1 Faculty of Health Sciences, University of Primorska, Koper, Slovenia.,2 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Savarin M, Prevc A, Rzek M, Bosnjak M, Vojvodic I, Cemazar M, Jarm T, Sersa G. Intravital Monitoring of Vasculature After Targeted Gene Therapy Alone or Combined With Tumor Irradiation. Technol Cancer Res Treat 2018; 17:1533033818784208. [PMID: 29969947 PMCID: PMC6048615 DOI: 10.1177/1533033818784208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular-targeted therapies exhibit radiosensitizing effects by remodeling tumor
vasculature, thus facilitating the increased oxygenation of the remaining tumor tissue. To
examine these phenomena, the effects of antiendoglin gene therapy alone and in combination
with irradiation were monitored for 5 consecutive days on a murine mammary adenocarcinoma
(TS/A) tumor model growing in a dorsal window chamber. The vascularization of the tumors
was assessed by the determination of the tumor vascular area and by measurement of tumor
perfusion by using laser Doppler flowmetry to provide insight into intratumoral gene
electrotransfer effects. The changes in the vascular area after this specific therapy
correlated with laser Doppler measurements, indicating that either of the methods can be
used to demonstrate the induced changes in the vascularization and perfusion of tumors.
Gene electrotransfer with an endothelial-specific promoter resulted in a vascular-targeted
effect on tumor vasculature within the first 24 hours and did not restore within 5 days.
The combination with the irradiation did not result in a more pronounced vascular effect,
and irradiation alone only abrogated the formation of new vessels and prevented an
increase in the tumor perfusion over time. The results indicate that tumors grown in a
dorsal window chamber facilitate intravital measurements of the vascularization of tumors
and blood perfusion, enabling the monitoring of the antiangiogenic or vascular disruptive
effects of different therapies.
Collapse
Affiliation(s)
- Monika Savarin
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ajda Prevc
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matic Rzek
- 2 Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Masa Bosnjak
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ilija Vojvodic
- 3 Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,4 Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Tomaz Jarm
- 2 Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,5 Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett 2018; 16:687-702. [PMID: 29963134 PMCID: PMC6019900 DOI: 10.3892/ol.2018.8733] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
When Folkman first suggested a theory about the association between angiogenesis and tumor growth in 1971, the hypothesis of targeting angiogenesis to treat cancer was formed. Since then, various studies conducted across the world have additionally confirmed the theory of Folkman, and numerous efforts have been made to explore the possibilities of curing cancer by targeting angiogenesis. Among them, anti-angiogenic gene therapy has received attention due to its apparent advantages. Although specific problems remain prior to cancer being fully curable using anti-angiogenic gene therapy, several methods have been explored, and progress has been made in pre-clinical and clinical settings over previous decades. The present review aimed to provide up-to-date information concerning tumor angiogenesis and gene delivery systems in anti-angiogenic gene therapy, with a focus on recent developments in the study and application of the most commonly studied and newly identified anti-angiogenic candidates for anti-angiogenesis gene therapy, including interleukin-12, angiostatin, endostatin, tumstatin, anti-angiogenic metargidin peptide and endoglin silencing.
Collapse
Affiliation(s)
- Tinglu Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Tingyue Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| |
Collapse
|
11
|
Markelc B, Bellard E, Sersa G, Jesenko T, Pelofy S, Teissié J, Frangez R, Rols MP, Cemazar M, Golzio M. Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions. J Control Release 2018; 276:30-41. [PMID: 29476881 DOI: 10.1016/j.jconrel.2018.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Delivery of electric field pulses, i.e. electroporation (EP), to tissues has been shown to have a blood flow modifying effect. Indeed, the diameter of blood vessels exposed to EP is immediately reduced resulting in blood flow abrogation, followed by an increase in vascular permeability. The main cause of the increased permeability remains unknown. The aim of this study was to determine whether the in vivo effects of EP on permeability of blood vessels are linked to the permeabilization of endothelial cells' membrane (EC) and/or disruption of cell-to-cell junctions. We used a dorsal window chamber model in C57Bl/6 mice coupled with multiphoton microscopy and fluorescently labelled antibodies against PECAM-1 (CD31) to visualize endothelial cell-to-cell junctions. Clinically validated EP parameters were used and behavior of cell-to-cell junctions, in combination with leakage of 70 kDa fluorescein isothiocyanate labelled dextran (FD), was followed in time. After EP, a constriction of blood vessels was observed and correlated with the change in the shape of ECs. This was followed by an increase in permeability of blood vessels for 70 kDa FD and a decrease in the volume of labelled cell-to-cell junctions. Both parameters returned to pre-treatment values in 50% of mice. For the remaining 50%, we hypothesize that disruption of cell-to-cell junctions after EP may trigger the platelet activation cascade. Our findings show for the first time in vivo that alterations in cell-to-cell junctions play an important role in the response of blood vessels to EP and explain their efficient permeabilization.
Collapse
Affiliation(s)
- Bostjan Markelc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France; Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Sandrine Pelofy
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Robert Frangez
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana, Slovenia
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France.
| |
Collapse
|
12
|
Electrotransfer of Different Control Plasmids Elicits Different Antitumor Effectiveness in B16.F10 Melanoma. Cancers (Basel) 2018; 10:cancers10020037. [PMID: 29382170 PMCID: PMC5836069 DOI: 10.3390/cancers10020037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
Several studies have shown that different control plasmids may cause antitumor action in different murine tumor models after gene electrotransfer (GET). Due to the differences in GET protocols, plasmid vectors, and experimental models, the observed antitumor effects were incomparable. Therefore, the current study was conducted comparing antitumor effectiveness of three different control plasmids using the same GET parameters. We followed cytotoxicity in vitro and the antitumor effect in vivo after GET of control plasmids pControl, pENTR/U6 scr and pVAX1 in B16.F10 murine melanoma cells and tumors. Types of cell death and upregulation of selected cytosolic DNA sensors and cytokines were determined. GET of all three plasmids caused significant growth delay in melanoma tumors; nevertheless, the effect of pVAX1 was significantly greater than pControl. While DNA sensors in vivo were not upregulated significantly, cytokines IFN β and TNF α were upregulated after GET of pVAX1. In vitro, the mRNAs of some cytosolic DNA sensors were overexpressed after GET; however, with no significant difference among the three plasmids. In summary, although differences in antitumor effects were observed among control plasmids in vivo, no differences in cellular responses to plasmid GET were detected in tumor cells in vitro. Thus, the tumor microenvironment as well as some plasmid properties are most probably responsible for the antitumor effectiveness.
Collapse
|
13
|
Savarin M, Kamensek U, Cemazar M, Heller R, Sersa G. Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response. Radiol Oncol 2017; 51:30-39. [PMID: 28265230 PMCID: PMC5330176 DOI: 10.1515/raon-2017-0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Background Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors. Materials and methods The murine melanoma B16F10 tumors, growing on the back of C57Bl/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, proliferation, vascularization, presence of hypoxia and infiltration of immune cells,) was used to evaluate the therapeutic mechanisms. Results Gene electrotransfer of plasmid silencing endoglin predominantly indicated vascular targeted effects of the therapy, since significant tumor growth delay and 44% of tumor free mice were obtained. In addition, irradiation had minor effects on radioresistant melanoma, with 11% of mice tumor free. The combined treatment resulted in excellent effectiveness with 88% of mice tumor free, with more than half resistant to secondary tumor challenge, which was observed also with the plasmid devoid of the therapeutic gene. Histological analysis of tumors in the combined treatment group, demonstrated similar mode of action of the gene electrotransfer of plasmid encoding shRNA for silencing endoglin and devoid of it, both through the induction of an immune response. Conclusions The results of this study indicate that irradiation can in radioresistant melanoma tumors, by release of tumor associated antigens, serve as activator of the immune response, besides directly affecting tumor cells and vasculature. The primed antitumor immune response can be further boosted by gene electrotransfer of plasmid, regardless of presence of the therapeutic gene, which was confirmed by the high radiosensitization, resulting in prolonged tumor growth delay and 89% of tumor free mice that were up to 63% resistant to secondary challenge of tumor. In addition, gene electrotransfer of therapeutic plasmid for silencing endoglin has also a direct effect on tumor vasculature and tumors cells; however in combination with radiotherapy this effect was masked by pronounced immune response.
Collapse
Affiliation(s)
- Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, USA
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Electrotransfer parameters as a tool for controlled and targeted gene expression in skin. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e356. [PMID: 27574782 PMCID: PMC5023408 DOI: 10.1038/mtna.2016.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed). Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule) were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene.
Collapse
|
15
|
Barriuso B, Antolín P, Arias FJ, Girotti A, Jiménez P, Cordoba-Diaz M, Cordoba-Diaz D, Girbés T. Anti-Human Endoglin (hCD105) Immunotoxin-Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1. Toxins (Basel) 2016; 8:E184. [PMID: 27294959 PMCID: PMC4926150 DOI: 10.3390/toxins8060184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022] Open
Abstract
Endoglin (CD105) is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT)-containing recombinant musarmin 1 (single chain ribosome-inactivating proteins) linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10(-10) to 10(-9) M.
Collapse
Affiliation(s)
- Begoña Barriuso
- Department of Biochemistry and Molecular Biology, University of Valladolid, 47005 Valladolid, Spain.
| | - Pilar Antolín
- Department of Biochemistry and Molecular Biology, University of Valladolid, 47005 Valladolid, Spain.
| | - F Javier Arias
- Department of Biochemistry and Molecular Biology, University of Valladolid, 47005 Valladolid, Spain.
- Bioforge, University of Valladolid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 47002 Valladolid, Spain.
| | - Alessandra Girotti
- Bioforge, University of Valladolid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 47002 Valladolid, Spain.
| | - Pilar Jiménez
- Department of Nutrition and Bromatology, University of Valladolid, 47005 Valladolid, Spain.
| | - Manuel Cordoba-Diaz
- Department of Pharmacy & Pharmaceutical Technology and University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain.
| | - Damián Cordoba-Diaz
- Department of Pharmacy & Pharmaceutical Technology and University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain.
| | - Tomás Girbés
- Department of Nutrition and Bromatology, University of Valladolid, 47005 Valladolid, Spain.
| |
Collapse
|
16
|
Tumor radiosensitization by gene therapy against endoglin. Cancer Gene Ther 2016; 23:214-20. [PMID: 27199221 DOI: 10.1038/cgt.2016.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
Abstract
Gene electrotransfer of plasmid encoding shRNA against endoglin exerts antitumor efficacy, predominantly by vascular targeted effect. As vascular targeting therapies can promote radiosensitization, the aim of this study was to explore this gene therapy approach with single and split dose of irradiation in an endoglin non-expressing TS/A mammary adenocarcinoma tumor model to specifically study the vascular effects. Intratumoral gene electrotransfer of plasmids encoding shRNA against endoglin, under the control of a constitutive or tissue-specific promoter for endothelial cells, combined with a single or three split doses of irradiations was evaluated for the antitumor efficacy and histologically. Both plasmids proved to be equally effective in tumor radiosensitization with 40-47% of tumor cures. The combined treatment induced a significant decrease in the number of blood vessels and proliferating cells, and an increase in levels of necrosis, apoptosis and hypoxia; therefore, the antitumor efficacy was ascribed to the interaction of vascular targeted effect of gene therapy with irradiation. Endoglin silencing by the shRNA technology, combined with electrotransfer and the use of a tissue-specific promoter for endothelial cells, proved to be a feasible and effective therapeutic approach that can be used in combined treatment with tumor irradiation.
Collapse
|
17
|
Dolinsek T, Sersa G, Prosen L, Bosnjak M, Stimac M, Razborsek U, Cemazar M. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects. Cancers (Basel) 2015; 8:cancers8010003. [PMID: 26712792 PMCID: PMC4728450 DOI: 10.3390/cancers8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells.
Collapse
Affiliation(s)
- Tanja Dolinsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Lara Prosen
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Urska Razborsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| |
Collapse
|
18
|
Tesic N, Kamensek U, Sersa G, Kranjc S, Stimac M, Lampreht U, Preat V, Vandermeulen G, Butinar M, Turk B, Cemazar M. Endoglin (CD105) Silencing Mediated by shRNA Under the Control of Endothelin-1 Promoter for Targeted Gene Therapy of Melanoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e239. [PMID: 25942402 DOI: 10.1038/mtna.2015.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/23/2015] [Indexed: 11/09/2022]
Abstract
Endoglin (CD105), a transforming growth factor (TGF)-β coreceptor, and endothelin-1, a vasoconstrictor peptide, are both overexpressed in tumor endothelial and melanoma cells. Their targeting is therefore a promising therapeutic approach for melanoma tumors. The aim of our study was to construct a eukaryotic expression plasmid encoding the shRNA molecules against CD105 under the control of endothelin-1 promoter and to evaluate its therapeutic potential both in vitro in murine B16F10-luc melanoma and SVEC4-10 endothelial cells and in vivo in mice bearing highly metastatic B16F10-luc tumors. Plasmid encoding shRNA against CD105 under the control of the constitutive U6 promoter was used as a control. We demonstrated the antiproliferative and antiangiogenic effects of both plasmids in SVEC4-10 cells, as well as a moderate antitumor and pronounced antimetastatic effect in B16F10-luc tumors in vivo. Our results provide evidence that targeting melanoma with shRNA molecules against CD105 under the control of endothelin-1 promoter is a feasible and effective treatment, especially for the reduction of metastatic spread.
Collapse
Affiliation(s)
- Natasa Tesic
- Faculty of Health Sciences, University of Primorska, Isola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ursa Lampreht
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronique Preat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Woluwe-Saint-Lambert, Belgium
| | - Gaelle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Woluwe-Saint-Lambert, Belgium
| | - Miha Butinar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Maja Cemazar
- 1] Faculty of Health Sciences, University of Primorska, Isola, Slovenia [2] Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Stimac M, Dolinsek T, Lampreht U, Cemazar M, Sersa G. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects. PLoS One 2015; 10:e0124913. [PMID: 25909447 PMCID: PMC4409373 DOI: 10.1371/journal.pone.0124913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/11/2015] [Indexed: 02/06/2023] Open
Abstract
Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.
Collapse
Affiliation(s)
- Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Dolinsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ursa Lampreht
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|