1
|
Alsenani F. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer's diseases through comprehensive molecular docking analyses. Saudi J Biol Sci 2024; 31:103998. [PMID: 38681227 PMCID: PMC11053229 DOI: 10.1016/j.sjbs.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease (AD) continues to be a worldwide health concern, demanding innovative therapeutic approaches. This study investigates the neuroprotective potential of herbal compounds by scrutinizing their interactions with Beta-Secretase-1 (BACE1). Through comprehensive molecular docking analyses, three compounds, Masticadienonic acid (ΔG: -9.6 kcal/mol), Hederagenin (ΔG: -9.3 kcal/mol), and Anthocyanins (ΔG: -8.1 kcal/mol), emerge as promising BACE1 ligands, displaying low binding energies and strong affinities. ADME parameter predictions, drug-likeness assessments, and toxicity analyses reveal favorable pharmacokinetic profiles for these compounds. Notably, Masticadienonic Acid exhibits optimal drug-likeness (-3.3736) and negligible toxicity concerns. Hederagenin (drug-likeness: -5.3272) and Anthocyanins (drug-likeness: -6.2041) also demonstrate promising safety profiles. Furthermore, pharmacophore modeling elucidates the compounds' unique interaction landscapes within BACE1's active site. Masticadienonic acid showcases seven hydrophobic interactions and a hydrogen bond acceptor interaction with Thr232. Hederagenin exhibits a specific hydrogen bond acceptor interaction with Trp76, emphasizing its selective binding. Anthocyanins reveal a multifaceted engagement, combining hydrophobic contacts and hydrogen bond interactions with key residues. In conclusion, Masticadienonic acid, Hederagenin, and Anthocyanins stand out as promising candidates for further experimental validation, presenting a synergistic balance of efficacy and safety in combating AD through BACE1 inhibition.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
2
|
Acero N, Ortega T, Villagrasa V, Leon G, Muñoz-Mingarro D, Castillo E, González-Rosende ME, Borrás S, Rios JL, Bosch-Morell F, Martínez-Solís I. Phytotherapeutic alternatives for neurodegenerative dementias: Scientific review, discussion and therapeutic proposal. Phytother Res 2023; 37:1176-1211. [PMID: 36690605 DOI: 10.1002/ptr.7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
The incidence and prevalence of age-related neurodegenerative dementias have been increasing. There is no curative therapy and conventional drug treatment can cause problems for patients. Medicinal plants traditionally used for problems associated with ageing are emerging as a therapeutic resource. The main aim is to give a proposal for use and future research based on scientific knowledge and tradition. A literature search was conducted in several searchable databases. The keywords used were related to neurodegenerative dementias, ageing and medicinal plants. Boolean operators and filters were used to focus the search. As a result, there is current clinical and preclinical scientific information on 49 species used in traditional medicine for ageing-related problems, including neurodegenerative dementias. There are preclinical and clinical scientific evidences on their properties against protein aggregates in the central nervous system and their effects on neuroinflammation, apoptosis dysregulation, mitochondrial dysfunction, gabaergic, glutamatergic and dopaminergic systems alterations, monoamine oxidase alterations, serotonin depletion and oestrogenic protection. In conclusion, the potential therapeutic effect of the different medicinal plants depends on the type of neurodegenerative dementia and its stage of development, but more clinical and preclinical research is needed to find better, safer and more effective treatments.
Collapse
Affiliation(s)
- Nuria Acero
- Pharmaceutical and Health Sciences Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Teresa Ortega
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - Victoria Villagrasa
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Gemma Leon
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - M Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Silvia Borrás
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Jose Luis Rios
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Bosch-Morell
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Isabel Martínez-Solís
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,ICBiBE-Botanical Garden, University of Valencia, Valencia, Valencia, Spain
| |
Collapse
|
3
|
Wang M, Yang X, Gao Y, Han W. Computer-Aided Screening and Revealing Action Mechanism of Green Tea Polyphenols Intervention in Alzheimer's Disease. Foods 2023; 12:foods12030635. [PMID: 36766162 PMCID: PMC9914464 DOI: 10.3390/foods12030635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The accumulation of cross-β-sheet amyloid fibrils is a hallmark of the neurodegenerative process of Alzheimer's disease (AD). Although it has been reported that green tea substances such as epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) could alleviate the symptoms of AD and other neurodegenerative diseases, the pharmacological mechanism remains largely unexplored. This study aimed to reveal the underlying mechanism of EC, ECG, EGC and EGCG in AD using a computer-aided screening strategy. Our results showed that the four tea polyphenols interfered with the signaling pathways of AD via calcium signaling channels, neurodegeneration-multiple disease signal pathways and others. We also identified the key residues of the interaction between VEGFA and the four active components, which included Glu64 and Phe36. Overall, we have provided valuable insights into the molecular mechanism of tea polyphenols, which could be used as a reference to improve therapeutic strategies against AD.
Collapse
|