1
|
Uchikawa H, Rahmani R. Animal Models of Intracranial Aneurysms: History, Advances, and Future Perspectives. Transl Stroke Res 2025; 16:37-48. [PMID: 39060663 DOI: 10.1007/s12975-024-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Intracranial aneurysms (IA) are a disease process with potentially devastating outcomes, particularly when rupture occurs leading to subarachnoid hemorrhage. While some candidates exist, there is currently no established pharmacological prevention of growth and rupture. The development of prophylactic treatments is a critical area of research, and preclinical models using animals play a pivotal role. These models, which utilize various species and induction methods, each possess unique characteristics that can be leveraged depending on the specific aim of the study. A comprehensive understanding of these models, including their historical development, is crucial for appreciating the advantages and limitations of aneurysm research in animal models.We summarize the significant roles of animal models in IA research, with a particular focus on rats, mice, and large animals. We discuss the pros and cons of each model, providing insights into their unique characteristics and contributions to our understanding of IA. These models have been instrumental in elucidating the pathophysiology of IA and in the development of potential therapeutic strategies.A deep understanding of these models is essential for advancing research on preventive treatments for IA. By leveraging the unique strengths of each model and acknowledging their limitations, researchers can conduct more effective and targeted studies. This, in turn, can accelerate the development of novel therapeutic strategies, bringing us closer to the goal of establishing an effective prophylactic treatment for IA. This review aims to provide a comprehensive view of the current state of animal models in IA research.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Redi Rahmani
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA.
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Cayron AF, Morel S, Allémann E, Bijlenga P, Kwak BR. Imaging of intracranial aneurysms in animals: a systematic review of modalities. Neurosurg Rev 2023; 46:56. [PMID: 36786880 PMCID: PMC9928939 DOI: 10.1007/s10143-023-01953-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Intracranial aneurysm (IA) animal models are paramount to study IA pathophysiology and to test new endovascular treatments. A number of in vivo imaging modalities are available to characterize IAs at different stages of development in these animal models. This review describes existing in vivo imaging techniques used so far to visualize IAs in animal models. We systematically searched for studies containing in vivo imaging of induced IAs in animal models in PubMed and SPIE Digital library databases between 1 January 1945 and 13 July 2022. A total of 170 studies were retrieved and reviewed in detail, and information on the IA animal model, the objective of the study, and the imaging modality used was collected. A variety of methods to surgically construct or endogenously induce IAs in animals were identified, and 88% of the reviewed studies used surgical methods. The large majority of IA imaging in animals was performed for 4 reasons: basic research for IA models, testing of new IA treatment modalities, research on IA in vivo imaging of IAs, and research on IA pathophysiology. Six different imaging techniques were identified: conventional catheter angiography, computed tomography angiography, magnetic resonance angiography, hemodynamic imaging, optical coherence tomography, and fluorescence imaging. This review presents and discusses the advantages and disadvantages of all in vivo IA imaging techniques used in animal models to help future IA studies finding the most appropriate IA imaging modality and animal model to answer their research question.
Collapse
Affiliation(s)
- Anne F Cayron
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences - Division of Neurosurgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- Department of Clinical Neurosciences - Division of Neurosurgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland.
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
4
|
Mousavi J. S. SM, Faghihi D, Sommer K, Bhurwani MMS, Patel TR, Santo B, Waqas M, Ionita C, Levy EI, Siddiqui AH, Tutino VM. Realistic computer modelling of stent retriever thrombectomy: a hybrid finite-element analysis-smoothed particle hydrodynamics model. J R Soc Interface 2021; 18:20210583. [PMID: 34905967 PMCID: PMC8672072 DOI: 10.1098/rsif.2021.0583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Stent retriever thrombectomy is a pre-eminent treatment modality for large vessel ischaemic stroke. Simulation of thrombectomy could help understand stent and clot mechanics in failed cases and provide a digital testbed for the development of new, safer devices. Here, we present a novel, in silico thrombectomy method using a hybrid finite-element analysis (FEA) and smoothed particle hydrodynamics (SPH). Inspired by its biological structure and components, the blood clot was modelled with the hybrid FEA-SPH method. The Solitaire self-expanding stent was parametrically reconstructed from micro-CT imaging and was modelled as three-dimensional finite beam elements. Our simulation encompassed all steps of mechanical thrombectomy, including stent packaging, delivery and self-expansion into the clot, and clot extraction. To test the feasibility of our method, we simulated clot extraction in simple straight vessels. This was compared against in vitro thrombectomies using the same stent, vessel geometry, and clot size and composition. Comparisons with benchtop tests indicated that our model was able to accurately simulate clot deflection and penetration of stent wires into the clot, the relative movement of the clot and stent during extraction, and clot fragmentation/embolus formation. In this study, we demonstrated that coupling FEA and SPH techniques could realistically model stent retriever thrombectomy.
Collapse
Affiliation(s)
- S. Mostafa Mousavi J. S.
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Danial Faghihi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Kelsey Sommer
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Mohammad M. S. Bhurwani
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Tatsat R. Patel
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Briana Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Ciprian Ionita
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Elad I. Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Tsukada T, Izumi T, Isoda H, Nishihori M, Kropp AE, Mizuno T, Wakabayashi T. Comparison of hemodynamic stress in healthy vessels after parent artery occlusion and flow diverter stent treatment for internal carotid artery aneurysm. J Neurosurg 2021; 136:619-626. [PMID: 34416714 DOI: 10.3171/2021.2.jns204185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE De novo aneurysms generally develop in healthy vessels after parent artery occlusion for large internal carotid artery (ICA) aneurysm, possibly owing to increased hemodynamic stress in the remaining vessels. In recent years, there has been a shift toward flow diverter stent treatment. However, there is a lack of direct evidence and data that prove this change in hemodynamic stress in healthy vessels after parent artery occlusion and flow diverter stent treatment. The authors compared hemodynamic stress in healthy-side vessels before and after parent artery occlusion and flow diverter treatments. METHODS The authors included patients who underwent 3D cine phase-contrast MRI before and after large ICA aneurysm treatment. Spatially and temporally averaged volume flow rates and spatially averaged systolic wall shear stress (WSS) in healthy-side ICA distal to the posterior communicating artery (C1 segment according to Fisher's classification) were measured before and after parent artery occlusion and flow diverter treatments. RESULTS Seventeen patients were included (5 patients in the parent artery occlusion group and 12 in the flow diverter group). At 1-2 months after treatment, median volume flow rate in healthy-side ICA increased from 5.36 ml/sec to 6.28 ml/sec (total increase 117%, p = 0.04) in the parent artery occlusion group and from 4.65 ml/sec to 4.93 ml/sec (total increase 106%, p = 0.02) in the flow diverter group. In the parent artery occlusion group, median WSS in the C1 segment of the healthy-side ICA increased from 3.91 Pa to 5.61 Pa (total increase 143%, p = 0.08); however, no significant increase was observed in the flow diverter group (4.29 Pa to 4.57 Pa [total increase 107%, p = 0.21]). CONCLUSIONS Postoperatively, volume flow rate and WSS in the C1 segment of the healthy-side ICA significantly increased in the parent artery occlusion group. Therefore, the parent artery occlusion group was more prone to de novo aneurysm than the flow diverter group.
Collapse
Affiliation(s)
- Tetsuya Tsukada
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Izumi
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- 2Brain & Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Masahiro Nishihori
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - A Elisabeth Kropp
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Mizuno
- 3Department of Medical Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Toshihiko Wakabayashi
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Lamooki SR, Tutino VM, Paliwal N, Damiano RJ, Waqas M, Nagesh SSV, Rajabzadeh-Oghaz H, Vakharia K, Siddiqui AH, Meng H. Evaluation of Two Fast Virtual Stenting Algorithms for Intracranial Aneurysm Flow Diversion. Curr Neurovasc Res 2021; 17:58-70. [PMID: 31987021 DOI: 10.2174/1567202617666200120141608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endovascular treatment of intracranial aneurysms (IAs) by flow diverter (FD) stents depends on flow modification. Patient-specific modeling of FD deployment and computational fluid dynamics (CFD) could enable a priori endovascular strategy optimization. We developed a fast, simplistic, expansion-free balls-weeping algorithm to model FDs in patientspecific aneurysm geometry. However, since such strong simplification could result in less accurate simulations, we also developed a fast virtual stenting workflow (VSW) that explicitly models stent expansion using pseudo-physical forces. METHODS To test which of these two fast algorithms more accurately simulates real FDs, we applied them to virtually treat three representative patient-specific IAs. We deployed Pipeline Embolization Device into 3 patient-specific silicone aneurysm phantoms and simulated the treatments using both balls-weeping and VSW algorithms in computational aneurysm models. We then compared the virtually deployed FD stents against experimental results in terms of geometry and post-treatment flow fields. For stent geometry, we evaluated gross configurations and porosity. For post-treatment aneurysmal flow, we compared CFD results against experimental measurements by particle image velocimetry. RESULTS We found that VSW created more realistic FD deployments than balls-weeping in terms of stent geometry, porosity and pore density. In particular, balls-weeping produced unrealistic FD bulging at the aneurysm neck, and this artifact drastically increased with neck size. Both FD deployment methods resulted in similar flow patterns, but the VSW had less error in flow velocity and inflow rate. CONCLUSION In conclusion, modeling stent expansion is critical for preventing unrealistic bulging effects and thus should be considered in virtual FD deployment algorithms. Also endowed with its high computational efficiency and superior accuracy, the VSW algorithm is a better candidate for implementation into a bedside clinical tool for FD deployment simulation.
Collapse
Affiliation(s)
- Saeb R Lamooki
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nikhil Paliwal
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Robert J Damiano
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Setlur S V Nagesh
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hamidreza Rajabzadeh-Oghaz
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Kunal Vakharia
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hui Meng
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY, United States.,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Endogenous animal models of intracranial aneurysm development: a review. Neurosurg Rev 2021; 44:2545-2570. [PMID: 33501561 DOI: 10.1007/s10143-021-01481-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods, aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endogenous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies aimed at longitudinally assessing IA pathobiology in models that incorporate aneurysm growth will likely have the largest impact on our understanding of the disease. We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-cell imaging, and next-generation omics technology.
Collapse
|
8
|
Tang H, Lu Z, Xue G, Li S, Xu F, Yan Y, Liu J, Zuo Q, Luo Y, Huang Q. The development and understanding of intracranial aneurysm based on rabbit model. Neuroradiology 2020; 62:1219-1230. [PMID: 32594185 DOI: 10.1007/s00234-020-02475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
In modern society, intracranial aneurysms have seriously affected people's life. To better study and treat intracranial aneurysm, animal models are ideal candidates to perform biological research and preclinical endovascular device testing. Rabbit aneurysm model is one of the most commonly used animal models, and the rabbit aneurysms share similarities in histology, morphology, and hemodynamic aspects with human intracranial aneurysms, which is an ideal model for intracranial aneurysm pre-clinical and basic research. In this review, we will summarize the main methods of establishing rabbit aneurysms model and will further discuss the current biological mechanisms of intracranial aneurysms based on rabbit model. Further improvements of rabbit aneurysm model and more deep studies based on this model are needed to provide new insights into studying and clinical treating intracranial aneurysm.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200050, People's Republic of China
| | - Zhiwen Lu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Sisi Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200050, People's Republic of China
| | - Yazhou Yan
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yin Luo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
9
|
Preclinical Intracranial Aneurysm Models: A Systematic Review. Brain Sci 2020; 10:brainsci10030134. [PMID: 32120907 PMCID: PMC7139747 DOI: 10.3390/brainsci10030134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/30/2022] Open
Abstract
Intracranial aneurysms (IA) are characterized by weakened cerebral vessel walls that may lead to rupture and subarachnoid hemorrhage. The mechanisms behind their formation and progression are yet unclear and warrant preclinical studies. This systematic review aims to provide a comprehensive, systematic overview of available animal models for the study of IA pathobiology. We conducted a systematic literature search using the PubMed database to identify preclinical studies employing IA animal models. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Included studies were reviewed and categorized according to the experimental animal and aneurysm model. Of 4266 returned results, 3930 articles were excluded based on the title and/or abstract and further articles after screening the full text, leaving 123 studies for detailed analysis. A total of 20 different models were found in rats (nine), mice (five), rabbits (four), and dogs (two). Rat models constituted the most frequently employed intracranial experimental aneurysm model (79 studies), followed by mice (31 studies), rabbits (12 studies), and two studies in dogs. The most common techniques to induce cerebral aneurysms were surgical ligation of the common carotid artery with subsequent induction of hypertension by ligation of the renal arteries, followed by elastase-induced creation of IAs in combination with corticosterone- or angiotensin-induced hypertension. This review provides a comprehensive summary of the multitude of available IA models to study various aspects of aneurysm formation, growth, and rupture. It will serve as a useful reference for researchers by facilitating the selection of the most appropriate model and technique to answer their scientific question.
Collapse
|
10
|
Row S, Swartz DD, Andreadis ST. Animal models of cardiovascular disease as test beds of bioengineered vascular grafts. ACTA ACUST UNITED AC 2018; 24:37-45. [PMID: 30505334 DOI: 10.1016/j.ddmod.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The last two decades have seen many advances in regenerative medicine, including the development of tissue engineered vessels (TEVs) for replacement of damaged or diseased arteries or veins. Biomaterials from natural sources as well as synthetic polymeric materials have been employed in engineering vascular grafts. Recently, cell-free grafts have become available opening new possibilities for the next generation, off-the-shelf products. These TEVs are first tested in small or large animal models, which are usually young and healthy. However, the majority of patients in need of vascular grafts are elderly and suffer from comorbidities that may complicate their response to the implants. Therefore, it is important to evaluate TEVs in animal models of vascular disease in order to increase their predictive value and learn how the disease microenvironment may affect the patency and remodeling of vascular grafts. Small animals with various disease phenotypes are readily available due to the availability of transgenic or gene knockout technologies and can be used to address mechanistic questions related to vascular grafting. On the other hand, large animal models with similar anatomy, hematology and thrombotic responses to humans have been utilized in a preclinical setting. We propose that large animal models with certain pathologies or age range may provide more clinically relevant platforms for testing TEVs and facilitate the clinical translation of tissue engineering technologies by increasing the likelihood of success in clinical trials.
Collapse
Affiliation(s)
- Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.,Angiograft LLC, Amherst NY
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY.,Angiograft LLC, Amherst NY
| |
Collapse
|
11
|
Mahajan SD, Tutino VM, Redae Y, Meng H, Siddiqui A, Woodruff TM, Jarvis JN, Hennon T, Schwartz S, Quigg RJ, Alexander JJ. C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus. Immunology 2016; 148:407-19. [PMID: 27213693 DOI: 10.1111/imm.12619] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
Blood-brain barrier (BBB) dysfunction complicates central nervous system lupus, an important aspect of systemic lupus erythematosus. To gain insight into the underlying mechanism, vascular corrosion casts of brain were generated from the lupus mouse model, MRL/lpr mice and the MRL/MpJ congenic controls. Scanning electron microscopy of the casts showed loss of vascular endothelial cells in lupus mice compared with controls. Immunostaining revealed a significant increase in caspase 3 expression in the brain vascular endothelial cells, which suggests that apoptosis could be an important mechanism causing cell loss, and thereby loss of BBB integrity. Complement activation occurs in lupus resulting in increased generation of circulating C5a, which caused the endothelial layer to become 'leaky'. In this study, we show that C5a and lupus serum induced apoptosis in cultured human brain microvascular endothelial cells (HBMVECs), whereas selective C5a receptor 1 (C5aR1) antagonist reduced apoptosis in these cells, demonstrating C5a/C5aR1-dependence. Gene expression of initiator caspases, caspase 1 and caspase 8, and pro-apoptotic proteins death-associated protein kinase 1, Fas-associated protein (FADD), cell death-inducing DNA fragmentation factor 45 000 MW subunit A-like effector B (CIDEB) and BCL2-associated X protein were increased in HBMVECs treated with lupus serum or C5a, indicating that both the intrinsic and extrinsic apoptotic pathways could be critical mediators of brain endothelial cell apoptosis in this setting. Overall, our findings suggest that C5a/C5aR1 signalling induces apoptosis through activation of FADD, caspase 8/3 and CIDEB in brain endothelial cells in lupus. Further elucidation of the underlying apoptotic mechanisms mediating the reduced endothelial cell number is important in establishing the potential therapeutic effectiveness of C5aR1 inhibition that could prevent and/or reduce BBB alterations and preserve the physiological function of BBB in central nervous system lupus.
Collapse
Affiliation(s)
| | - Vincent M Tutino
- Toshiba Vascular Stroke Center, Biomedical Engineering Department, University at Buffalo, Buffalo, NY, USA
| | - Yonas Redae
- Department of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Hui Meng
- Toshiba Vascular Stroke Center, Biomedical Engineering Department, University at Buffalo, Buffalo, NY, USA
| | - Adnan Siddiqui
- Toshiba Vascular Stroke Center, Biomedical Engineering Department, University at Buffalo, Buffalo, NY, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - James N Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Teresa Hennon
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | | | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|