1
|
Mainali S, Nepal G, Shumilov K, Webb A, Fadda P, Mirebrahimi D, Hamed M, Nana-Sinkam P, Worrall BB, Woo D, Johnson N. MicroRNA Expression Profile in Acute Ischemic Stroke. Int J Mol Sci 2025; 26:747. [PMID: 39859461 PMCID: PMC11765720 DOI: 10.3390/ijms26020747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Acute ischemic stroke with large vessel occlusion (LVO) continues to present a considerable challenge to global health, marked by substantial morbidity and mortality rates. Although definitive diagnostic markers exist in the form of neuroimaging, their expense, limited availability, and potential for diagnostic delay can often result in missed opportunities for life-saving interventions. Despite several past attempts, research efforts to date have been fraught with challenges likely due to multiple factors, such as the inclusion of diverse stroke types, variable onset intervals, differing pathobiologies, and a range of infarct sizes, all contributing to inconsistent circulating biomarker levels. In this context, microRNAs (miRNAs) have emerged as a promising biomarker, demonstrating potential as biomarkers across various diseases, including cancer, cardiovascular conditions, and neurological disorders. These circulating miRNAs embody a wide spectrum of pathophysiological processes, encompassing cell death, inflammation, angiogenesis, neuroprotection, brain plasticity, and blood-brain barrier integrity. This pilot study explores the utility of circulating exosome-enriched extracellular vesicle (EV) miRNAs as potential biomarkers for anterior circulation LVO (acLVO) stroke. In our longitudinal prospective cohort study, we collected data from acLVO stroke patients at four critical time intervals post-symptom onset: 0-6 h, 6-12 h, 12-24 h, and 5-7 days. For comparative analysis, healthy individuals were included as control subjects. In this study, extracellular vesicles (EVs) were isolated from the plasma of participants, and the miRNAs within these EVs were profiled utilizing the NanoString nCounter system. Complementing this, a scoping review was conducted to examine the roles of specific miRNAs such as miR-140-5p, miR-210-3p, and miR-7-5p in acute ischemic stroke (AIS). This review involved a targeted PubMed search to assess their influence on crucial pathophysiological pathways in AIS, and their potential applications in diagnosis, treatment, and prognosis. The review also included an assessment of additional miRNAs linked to stroke. Within the first 6 h of symptom onset, three specific miRNAs (miR-7-5p, miR-140-5p, and miR-210-3p) exhibited significant differential expression compared to other time points and healthy controls. These miRNAs have previously been associated with neuroprotection, cellular stress responses, and tissue damage, suggesting their potential as early markers of acute ischemic stroke. This study highlights the potential of circulating miRNAs as blood-based biomarkers for hyperacute acLVO ischemic stroke. However, further validation in a larger, risk-matched cohort is required. Additionally, investigations are needed to assess the prognostic relevance of these miRNAs by linking their expression profiles with radiological and functional outcomes.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gaurav Nepal
- Department of Internal Medicine, Maharajgunj Medical Campus, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Kirill Shumilov
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amy Webb
- Biomedical Informatics Shared Resources, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Darya Mirebrahimi
- College of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Mohammad Hamed
- Department of Neurology, Division of Stroke and Neurocritical Care, The Ohio State University, Columbus, OH 43210, USA
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Bradford B. Worrall
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nicholas Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Liang J, Zhu Y, Liu S, Kuang B, Tian Z, Zhang L, Yang S, Lin M, Chen N, Liu X, Ai Q, Yang Y. Progress of Exosomal MicroRNAs and Traditional Chinese Medicine Monomers in Neurodegenerative Diseases. Phytother Res 2024; 38:5323-5349. [PMID: 39225243 DOI: 10.1002/ptr.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.
Collapse
Affiliation(s)
- Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuchen Zhu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Boyu Kuang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Chen C, Lan Z, Tang X, Chen W, Zhou X, Su H, Su R, Chen Z, Chen H, Guo Y, Deng W. Human-Derived Induced GABAergic Progenitor Cells Improve Cognitive Function in Mice and Inhibit Astrocyte Activation with Anti-Inflammatory Exosomes. Ann Neurol 2024; 96:488-507. [PMID: 38860520 DOI: 10.1002/ana.27001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE The role of gamma-aminobutyric acid-ergic (GABAergic) neuron impairment in Alzheimer's disease (AD), and if and how transplantation of healthy GABAergic neurons can improve AD, remain unknown. METHODS Human-derived medial ganglionic eminence progenitors (hiMGEs) differentiated from programmed induced neural precursor cells (hiNPCs) were injected into the dentate gyrus region of the hippocampus (HIP). RESULTS We showed that grafts migrate to the whole brain and form functional synaptic connections in amyloid precursor protein gene/ presenilin-1 (APP/PS1) chimeric mice. Following transplantation of hiMGEs, behavioral deficits and AD-related pathology were alleviated and defective neurons were repaired. Notably, exosomes secreted from hiMGEs, which are rich in anti-inflammatory miRNA, inhibited astrocyte activation invitro and in vivo, and the mechanism was related to regulation of CD4+ Th1 cells mediated tumor necrosis factor (TNF) pathway. INTERPRETATION Taken together, these findings support the hypothesis that hiMGEs transplantation is an alternative treatment for neuronal loss in AD and demonstrate that exosomes with anti-inflammatory activity derived from hiMGEs are important factors for graft survival. ANN NEUROL 2024;96:488-507.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Xihe Tang
- Department of Neurosurgery, Aviation General Hospital, Beijing, P. R. China
- Department of Neurosurgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Xing Zhou
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Hua Su
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, P. R. China
| | - Rixiang Su
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| |
Collapse
|
4
|
Lan Z, Tan F, He J, Liu J, Lu M, Hu Z, Zhuo Y, Liu J, Tang X, Jiang Z, Lian A, Chen Y, Huang Y. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155635. [PMID: 38701541 DOI: 10.1016/j.phymed.2024.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Ming Lu
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410219, PR China; Hunan Provincial Key Laboratory of Neurorestoration, The Second Affiliated Hospital, Hunan Normal University, Changsha, Hunan 410081, PR China; Department of Neurosurgery, the 921st Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha 410081, Hunan, PR China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410000, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - JunJiang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Department of Geriatrics, Hunan Provincial People's Hospital(First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410011, PR China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Aojie Lian
- Hunan provincial maternal and child health care hospital, Changsha, Hunan 410008, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Yongheng Chen
- First Clinical Department, Changsha Medical University, Changsha, Hunan 410219, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Yan Huang
- Hunan provincial maternal and child health care hospital, Changsha, Hunan 410008, PR China; Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410219, PR China; Hunan Provincial Key Laboratory of Neurorestoration, The Second Affiliated Hospital, Hunan Normal University, Changsha, Hunan 410081, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China.
| |
Collapse
|
5
|
Song YT, Li SS, Chao CY, Shuang-Guo, Chen GZ, Wang SX, Zhang MX, Yin YL, Li P. Floralozone regulates MiR-7a-5p expression through AMPKα2 activation to improve cognitive dysfunction in vascular dementia. Exp Neurol 2024; 376:114748. [PMID: 38458310 DOI: 10.1016/j.expneurol.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function. PURPOSE To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms. METHODS The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B. RESULTS The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not. CONCLUSION Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.
Collapse
Affiliation(s)
- Yu-Ting Song
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; JinShan Hospital of Fudan University, Shanghai 201508, China
| | - Shan-Shan Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Chun-Yan Chao
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Huang Huai University, Zhumadian 463000, China
| | - Shuang-Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Gui-Zi Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang-Xi Wang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Xiang Zhang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
6
|
Zhu XQ, Gao D. Naringenin alleviates cognitive dysfunction in rats with cerebral ischemia/reperfusion injury through up-regulating hippocampal BDNF-TrkB signaling: involving suppression in neuroinflammation and oxidative stress. Neuroreport 2024; 35:216-224. [PMID: 38141009 PMCID: PMC10852040 DOI: 10.1097/wnr.0000000000001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Cognitive dysfunction is one of the common complications of cerebral ischemia-reperfusion (CI/R) injury after ischemic stroke. Neuroinflammation and oxidative stress are the core pathological mechanism of CI/R injury. The activation of brain derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling antagonize cognitive dysfunction in a series of neuropathy. Naringenin (NAR) improves cognitive function in many diseases, but the role of NAR in CI/R injury-induced cognitive dysfunction remains unexplored. The study aimed to explore the potential protective effects of NAR in CI/R injury-induced cognitive dysfunction and underlying mechanism. The rats were exposed to transient middle cerebral artery occlusion (MCAO) and then treated with distilled water or NAR (50 or 100 mg/kg/day, p.o.) for 30 days. The Y-maze test, Novel object recognition test and Morris water maze test were performed to assess cognitive function. The levels of oxidative stress and inflammatory cytokines were measured by ELISA. The expressions of BDNF/TrkB signaling were detected by Western blot. NAR prevented cognitive impairment in MCAO-induced CI/R injury rats. Moreover, NAR inhibited oxidative stress (reduced levels of malondialdehyde and 4-hydroxynonenal, increased activities of superoxide dismutase and Glutathione peroxidase) and inflammatory cytokines (reduced levels of tumor necrosis factor-α, Interleukin-1β and Interleukin-6), up-regulated the expressions of BDNF and p-TrkB in hippocampus of MCAO-induced CI/R rats. NAR ameliorated cognitive dysfunction of CI/R rats via inhibiting oxidative stress, reducing inflammatory response, and up-regulating BDNF/TrkB signaling pathways in the hippocampus.
Collapse
Affiliation(s)
- Xiao-Qin Zhu
- Health School of Nuclear Industry, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
| | - Dong Gao
- The Affiliated Nanhua Hospital, Medical administration division, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Singh S, Chib S, Akhtar MJ, Kumar B, Chawla PA, Bhatia R. Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs). Curr Neuropharmacol 2024; 22:992-1015. [PMID: 36606589 PMCID: PMC10964107 DOI: 10.2174/1570159x21666230105110834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Md. Jawaid Akhtar
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO620, PC 130 Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
9
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|
12
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
13
|
Dong X, Nao J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154501. [PMID: 36368284 DOI: 10.1016/j.phymed.2022.154501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurological disorders, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, and glioblastoma often lead to long-term disability and death. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs of approximately 22 nucleotides, known to participate in both normal and pathological development, making them ideal therapeutic targets for clinical intervention. Several recent studies have suggested that plant-derived bioactive compounds (PDBCs) can have anti-atherosclerosis, antioxidant, and anti-inflammatory effects by regulating miRNAs. Thus, miRNAs are novel targets for the action of PDBCs. PURPOSE The aim of this review was to evaluate the current status of PDBCs targeted miRNAs by dissecting their development status through a literature review. METHODS A manual and electronic search was performed for English articles available from inception up to June 2022 reporting PDBCs and their regulating relationship with miRNAs for the therapeutic potential of neurological disorders. Information was retrieved from scientific databases including PubMed, ScienceDirect, Web of Science, Google Scholar and Chemical Abstracts Services. Keywords used for the search engines were "miRNAs" AND "Plant-derived bioactive compounds" in conjunction with "(native weeds OR alien invasive)" AND "traditional herbal medicine". RESULTS A total of 37 articles were retrieved on PDBCs and their related miRNAs in neurological disorders. These PDBCs from traditional herbal medicine may play a therapeutic role in neurological disorders in a variety of mechanisms by regulating the corresponding miRNAs. These mechanisms mainly include inhibiting oxidative stress, anti-neuroinflammation, anti-autophagy, and anti-apoptosis. PDBC are a group of chemically distinct compounds derived from medicinal plants, some of which have therapeutic effects on neurological disorders. CONCLUSION The emergence of miRNAs as pathological regulatory factors provides a new direction for the study of bioactive compounds in Traditional Chinese medicine and the elucidating of their epigenetic effects. Elucidating the regulatory relationship between bioactive compounds and miRNAs may help to identify new therapeutic targets and promoting the application of these compounds in precision medicine through their targeted molecular activity.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
14
|
Song TJ, Ke J, Chen F, Zhang JY, Zhang C, Chen HY. Effect of SNHG11/miR-7-5p/PLCB1 Axis on Acute Pancreatitis through Inhibiting p38MAPK Pathway. Cells 2022; 12:cells12010065. [PMID: 36611865 PMCID: PMC9818913 DOI: 10.3390/cells12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. A growing number of studies have shown that long noncoding RNAs (lncRNAs) play an important role in AP progression. Here, we aimed to elucidate the role of Small Nucleolar RNA Host Gene 11(SNHG11) and its underlying molecular mechanisms behind AP progression. The in vivo and in vitro AP cell models were established by retrograde injection of sodium taurocholate and caerulein stimulation into AR42J cells and HPDE6-C7 cells, respectively. A bioinformatics website predicted the relationship between SNHG11, miR-7-5p, and Phospholipase C Beta 1(PLCB1) and validated it with a dual-luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. AR42J cells and HPDE6-C7 cells were transfected with an overexpression of plasmids or shRNA to investigate the effects of the SNHG11/miR-7-5p/PLCB1 axis on cell proliferation and apoptosis, inflammatory cytokine secretion, and acute pancreatitis. Low expression of SNHG11 and PLCB1 and high expression of miR-7-5p were observed in AP pancreatic tissue and AP cell models. SNHG11 overexpression inhibited apoptosis and inflammatory responses induced by caerulein. Simultaneously, we discovered that SNHG11 regulates PLCB1 expression by sponging miR-7-5p. PLCB1 overexpression abrogated inflammatory damage exacerbated by miR-7-5p enrichment. In addition, the SNHG11/miR-7-5p/PLCB1 axis could be involved in caerulein-induced inflammatory injury by participating in the p38MAPK signaling pathway. The overexpressed SNHG11/miR-7-5p/PLCB1 axis can inhibit AP progression by participating in the p38MAPK signaling pathway, thereby providing a potential therapeutic target and therapeutic direction for AP therapy.
Collapse
Affiliation(s)
- Tian-Jiao Song
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Jun Ke
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Feng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
- Correspondence:
| | - Jiu-Yun Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Chun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Mindong Hospital, Ningde, Fujian Medical University, No. 89, Heshan Road, Fuan 355000, China
| | - Hong-Yi Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| |
Collapse
|
15
|
Cui Y, Song HT, Zhang P, Yin X, Wang Y, Wei X, Jia XJ. Curcumin protects PC12 cells from a high glucose-induced inflammatory response by regulating the miR-218-5p/TLR4 axis. Medicine (Baltimore) 2022; 101:e30967. [PMID: 36221434 PMCID: PMC9543010 DOI: 10.1097/md.0000000000030967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Curcumin exerts a protective effect on diabetic encephalopathy (DN), It is known for its potent neuroprotective, anti-inflammatory, antioxidant, and anticancer properties. However, the underlying mechanisms of curcumin's neuroprotective effects resulting from high glucose (HG)-induced injuries remain unknown. The purpose of this study is to identify the protective mechanism of Curcumin in the DN. METHODS In this study, pheochromocytoma cells (PC12 cells) were pretreated with different concentrations of Curcumin and then co-treated with Curcumin and glucose for 48 hours, and the cell viability was evaluated by CCK-8, the expression of the inflammatory mediators were detected by ELISA, the miR-218-5p and toll-like receptors (TLR4) level were examined by both quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, the potential target genes of miR-218-5p were identified using luciferase reporter assay. RESULTS The viability of PC12 cells treated with HG was significantly reduced in a dose- and time-dependent manner. Cotreatment of curcumin with HG significantly increased cell viability. Curcumin inhibited the expression of the inflammatory mediators, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), and induced the expression of the anti-inflammatory mediator interleukin-10 (IL-10). Curcumin upregulated the levels of miR-218-5p and downregulated the expression of TLR4 in HG-treated PC12 cells. The curcumin-induced anti-inflammatory effect was abrogated by a miR-218-5p inhibitor and overexpression of TLR4. The results suggest that curcumin ameliorates the inflammatory response by upregulating miR-218-5p levels in PC12 cells. CONCLUSIONS Our results indicate a protective role for curcumin in PC12 cells and suggest that it should be considered for the prophylactic treatment of DN in the future.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Neurology, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Tao Song
- Department of Vascular surgery, Shijiazhuang Second Hospital, Shijiazhuang, Hebei Province, China
| | - Pei Zhang
- Department of Diabetes Screening Centre, Shijiazhuang Second Hospital, Shijiazhuang, Hebei Province, China
| | - Xiao Yin
- Department of Traditional Chinese Medicine, Shijiazhuang Yuxi Community Health Service Center, Shijiazhuang, Hebei Province, China
| | - Ying Wang
- Department of Hemodialysis, Shijiazhuang Second Hospital, Shijiazhuang, Hebei Province, China
| | - Xuan Wei
- Department of Endocrinology, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xin-Ju Jia
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- *Correspondence: Xin-Ju Jia, Department of Endocrinology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei Province, China. (e-mail: )
| |
Collapse
|
16
|
The Emerging Role of Noncoding RNA Regulation of the Ferroptosis in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3595745. [PMID: 36187333 PMCID: PMC9519351 DOI: 10.1155/2022/3595745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease (CVD) is a significant public health issue due to its high prevalence and considerable contribution to the global disease burden. Recent studies suggest that genetic factors, including noncoding RNAs, have an important role in the progression of CVD. Noncoding RNA plays a critical role in genetic programming and gene regulation during development. Ferroptosis is a form of iron-dependent regulated cell death (RCD), which is mainly caused by increased lipid hydroperoxide and redox imbalance. Ferroptosis is essentially different from other forms of RCD in morphology and mechanism, such as apoptosis, autophagic cell death, pyroptosis, and necroptosis. Much evidence suggested ferroptosis is involved in the development of various CVDs, especially in cardiac ischemia/reperfusion injury, heart failure, and aortic dissection. Here, we review the latest findings based on noncoding RNA regulation of ferroptosis and its involvement in the pathogenesis of CVD and related treatments, aimed at providing insights into the impact of noncoding RNA regulation of ferroptosis for CVD.
Collapse
|
17
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
18
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
20
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
21
|
Jiang Y, Luo Y, Chen X, Liu N, Hou J, Piao J, Song C, Si C, Hu W, Li X. Senkyunolide H protects PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114659. [PMID: 34543683 DOI: 10.1016/j.jep.2021.114659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senkyunolide H (SNH) is a bioactive phthalide isolated from Ligusticum chuanxiong Hort rhizome and was reported to have multiple pharmacological effects. AIM OF THE STUDY The study was performed to verify the potency of SNH protecting PC12 cells from oxygen glucose deprivation/reperfusion (OGD/R)-induced injury and to elucidate the underlying mechanisms. MATERIALS AND METHODS OGD/R model was established in PC12 cells and the cell viability was measured by MTT assay. The cell morphology was observed using scanning electron microscope (SEM). The potential targets of SNH and related targets of OGD/R were screened, and a merged protein-protein interaction (PPI) network of SNH and OGD/R was constructed based on the network pharmacology analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathway analysis. Intracellular cAMP level and the protein expression levels were measured to elucidate the underlying mechanisms. RESULTS SNH pretreatment protected PC12 cells against OGD/R-induced cell death. SNH also significantly protected the cell protrusion. A merged PPI network was constructed and the shared candidate targets significantly enriched in cAMP signaling pathway. The level of intracellular cAMP and the protein level of p-CREB, p-AKT, p-PDK1 and PKA protein were up-regulated after the treatment of SNH compared with OGD/R modeling. CONCLUSIONS The present study indicated that SNH protected PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yanyan Luo
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xinyi Chen
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nan Liu
- Beijing Increasepharm Safety and Efficacy Co., Ltd, Beijing, 102206, China.
| | - Jincai Hou
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd., Beijing, 100083, China.
| | - Jingpei Piao
- College of Life Sciences, Jilin Normal University, Siping, 136000, China.
| | - Chao Song
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Xueqin Li
- Department of General Practice, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
22
|
Liu M, Shan G, Jiang H, Zeng L, Zhao K, Li Y, Ashraf GM, Li Z, Liu R. Identification of miRNA and Their Regulatory Effects Induced by Total Flavonoids From Dracocephalum moldavica in the Treatment of Vascular Dementia. Front Pharmacol 2021; 12:796628. [PMID: 34938197 PMCID: PMC8685430 DOI: 10.3389/fphar.2021.796628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Vascular dementia (VaD) is a general term used to describe difficulties in memory, reasoning, judgment, and planning caused by a reduced blood flow to the brain and consequent brain damage, in which microRNAs (miRNAs) are involved. Dracocephalum moldavica L. (D. moldavica) is traditionally used in the treatment of cardiovascular diseases as well as VaD, but the biomolecular mechanisms underlying its therapeutic effect are obscure. In the present study, the molecular mechanisms involved in the treatment of VaD by the total flavonoids from Dracocephalum moldavica L. (TFDM) were explored by the identification of miRNA profiling using bioinformatics analysis and experimental verification. A total of 2,562 differentially expressed miRNAs (DEMs) and 3,522 differentially expressed genes (DEGs) were obtained from the GSE120584 and GSE122063 datasets, in which the gene functional enrichment and protein-protein interaction network of 93 core targets, originated from the intersection of the top DEM target genes and DEGs, were established for VaD gene profiling. One hundred and eighty-five targets interacting with 42 flavonoids in the TFDM were included in a compound-target network, subsequently found that they overlapped with potential targets for VaD. These 43 targets could be considered in the treatment of VaD by TFDM, and included CaMKII, MAPK, MAPT, PI3K, and KDR, closely associated with the vascular protective effect of TFDM, as well as anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The subsequent analysis of the compound-target gene-miRNA network indicated that eight miRNAs that mediated 43 targets had a close interaction with TFDM, suggesting that the neuroprotective effects were principally due to kaempferol, apigenin, luteolin, and quercetin, which were mostly associated with the miR-3184-3p/ESR1, miR-6762-3p/CDK1, miR-6777-3p/ESRRA, and other related axes. Furthermore, the in vitro oxygen-glucose deprivation (OGD) model demonstrated that the dysregulation of miR-3184-3p and miR-6875-5p found by qRT-PCR was consistent with the changes in the bioinformatics analysis. TFDM and its active compounds involving tilianin, luteolin, and apigenin showed significant effects on the upregulation of miR-3184-3p and downregulation of miR-6875-5p in OGD-injured cells, in line with the improved cell viability. In conclusion, our findings revealed the underlying miRNA-target gene network and potential targets of TFDM in the treatment of VaD.
Collapse
Affiliation(s)
- Mimin Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaiyue Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Zhang T, Chen X, Qu Y, Ding Y. Curcumin Alleviates Oxygen-Glucose-Deprivation/Reperfusion-Induced Oxidative Damage by Regulating miR-1287-5p/LONP2 Axis in SH-SY5Y Cells. Anal Cell Pathol (Amst) 2021; 2021:5548706. [PMID: 34589382 PMCID: PMC8476263 DOI: 10.1155/2021/5548706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress-induced neuronal damage is a main cause of ischemia/reperfusion injury. Curcumin (Cur), the principal constituent extracted from dried rhizomes of Curcuma longa L. (turmeric), exhibits excellent antioxidant effects. Previous studies have indicated that miR-1287-5p was downregulated in patients with ischemic stroke. Additionally, we predicted that Lon Peptidase 2, Peroxisomal (LONP2), which is involved in oxidative stress regulation, is targeted by miR-1287-5p. The aim of the current study is to investigate the effect of Cur on ischemia/reperfusion damage and its underlying mechanism. To mimic ischemia/reperfusion damage environment, SH-SY5Y cells were subjected to oxygen-glucose-deprivation/reperfusion (OGD/R). OGD/R treatment downregulated miR-1287-5p and upregulated LONP2 in SH-SY5Y cells, but Cur alleviated OGD/R-induced oxidative damage and reversed the effect of OGD/R on the expression of miR-1287-5p and LONP2. Furthermore, we confirmed the interactive relationship between miR-1287-5p and LONP2 (negative regulation). We revealed that miR-1287-5p overexpression alleviated OGD/R-induced oxidative damage alleviation, similar to the effect of Cur. MiR-1287-5p inhibition accentuated OGD/R-induced oxidative damage in SH-SY5Y cells, which was reversed by Cur. The expression of LONP2 in OGD/R-treated SH-SY5Y cells was decreased by miR-1287-5p overexpression and increased by miR-1287-5p inhibition, and Cur counteracted the increase in LONP2 expression induced by miR-1287-5p inhibition. In conclusion, we suggest that Cur alleviates OGD/R-induced oxidative damage in SH-SY5Y cells by regulating the miR-1287-5p/LONP2 axis. The findings provide a theoretical basis for the clinical application of curcumin.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Xiaomin Chen
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Yueqing Qu
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Yanbing Ding
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| |
Collapse
|
24
|
Jia Y, Chen X, Chen Y, Li H, Ma X, Xing W, Zhao K. Zhenbao pill attenuates hydrogen peroxide-induced apoptosis by inhibiting autophagy in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114020. [PMID: 33716080 DOI: 10.1016/j.jep.2021.114020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Zhenbao pill (ZBP) is composed of 29 traditional Chinese medicines and has been proven to exhibit a valid therapeutic effect in nervous system diseases, such as stroke and hemiplegia sequelae. AIM OF THE STUDY Whether ZBP has a protective effect on vascular endothelial cells remains unknown. In this study, we established hydrogen peroxide (H2O2)-induced oxidative injury in human umbilical vein endothelial cells (HUVECs) as an in vitro model to investigate the pharmacological effects of ZBP. MATERIALS AND METHODS Following the intragastric administration of ZBP (0.25, 0.5, and 1 g/kg for seven days) in rats, drug-containing serum was obtained and cultivated with HUVECs before H2O2 treatment. The viability of HUVECs in the presence of H2O2 was measured by Cell Counting Kit-8 assay, lactate dehydrogenase assay, and flow cytometry. Furthermore, we estimated the effects of ZBP on the production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Autophagic puncta were detected using a fluorescence microscope. Western blotting and real-time polymerase chain reaction were used to detect the expression levels of several genes associated with apoptosis and autophagy. RESULTS Drug-containing serum separated from rats at 1 h after intragastric administration of ZBP (0.5 g/kg) significantly offered a protective effect to HUVECs and reduced cell apoptosis rates. Meanwhile, ZBP-containing serum also repressed ROS production induced by H2O2 exposure and maintained MMP. Further investigation revealed that ZBP-containing serum effectively reduced the accumulation of autophagic puncta. ZBP-mediated inhibition on cell autophagy was found to contribute to ameliorating cell apoptosis. Western blotting also confirmed that ZBP maintained AKT and mTOR phosphorylation and antagonized the imbalance of BCL2/BAX, thereby protecting cells from apoptosis. CONCLUSION Taken together, our data indicate that ZBP inhibits ROS production, mitochondrial damage, cell autophagy, and cell apoptosis. ZBP can offer protection to vascular endothelial cells against oxidative injury through the antagonism of apoptosis and autophagy. Thus, this study enhances the understanding of the therapeutic effects and mechanisms of ZBP in the process of recovery from myocardial and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yuchen Jia
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010070, PR China; Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Xiaoxue Chen
- Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Yajing Chen
- Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Hongxia Li
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010070, PR China
| | - Xiumei Ma
- Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Wanjin Xing
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010070, PR China.
| | - Kai Zhao
- Hohhot First Hospital, Hohhot, Inner Mongolia, 010030, PR China.
| |
Collapse
|
25
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
26
|
Abstract
Cerebral ischemia-reperfusion (I/R) is a kind of neurovascular disease that causes serious cerebral damage. MicroRNAs (miRNAs) have been widely reported to participate in multiple diseases, including cerebral I/R injury. However, the exact mechanisms of miR-7-5p in cerebral I/R injury was not fully elucidated. In this study, we explored the biological role and regulatory mechanism of miR-7-5p in cerebral I/R injury. We established an in vivo model of cerebral I/R by middle cerebral artery occlusion and an in vitro cellular model of cerebral I/R injury through treating neurons (SH-SY5Y cells) with oxygen-glucose deprivation (OGD). In addition, miR-7-5p expression was confirmed to be upregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Moreover, miR-7-5p inhibition overtly suppressed cerebral injury, cerebral inflammation, and SH-SY5Y cells apoptosis. Sirtuin 1 (sirt1) is previously reported to alleviate I/R, and in this study, it was identified to be a target of miR-7-5p based on luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction revealed sirt1 expression was downregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Besides, miR-7-5p negatively regulated sirt1. Finally, rescue assays delineated sirt1 overexpression recovered the miR-7-5p upregulation-induced promotion on cerebral I/R injury. In conclusion, miR-7-5p enhanced cerebral I/R injury by degrading sirt1, providing a new paradigm to investigate cerebral I/R injury.
Collapse
|
27
|
Ghibaudi M, Boido M, Green D, Signorino E, Berto GE, Pourshayesteh S, Singh A, Di Cunto F, Dalmay T, Vercelli A. miR-7b-3p Exerts a Dual Role After Spinal Cord Injury, by Supporting Plasticity and Neuroprotection at Cortical Level. Front Mol Biosci 2021; 8:618869. [PMID: 33869277 PMCID: PMC8044879 DOI: 10.3389/fmolb.2021.618869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) affects 6 million people worldwide with no available treatment. Despite research advances, the inherent poor regeneration potential of the central nervous system remains a major hurdle. Small RNAs (sRNAs) 19-33 nucleotides in length are a set of non-coding RNA molecules that regulate gene expression and have emerged as key players in regulating cellular events occurring after SCI. Here we profiled a class of sRNA known as microRNAs (miRNAs) following SCI in the cortex where the cell bodies of corticospinal motor neurons are located. We identified miR-7b-3p as a candidate target given its significant upregulation after SCI in vivo and we screened by miRWalk PTM the genes predicted to be targets of miR-7b-3p (among which we identified Wipf2, a gene regulating neurite extension). Moreover, 16 genes, involved in neural regeneration and potential miR-7b-3p targets, were found to be downregulated in the cortex following SCI. We also analysed miR-7b-3p function during cortical neuron development in vitro: we observed that the overexpression of miR-7b-3p was important (1) to maintain neurons in a more immature and, likely, plastic neuronal developmental phase and (2) to contrast the apoptotic pathway; however, in normal conditions it did not affect the Wipf2 expression. On the contrary, the overexpression of miR-7b-3p upon in vitro oxidative stress condition (mimicking the SCI environment) significantly reduced the expression level of Wipf2, as observed in vivo, confirming it as a direct miR-7b-3p target. Overall, these data suggest a dual role of miR-7b-3p: (i) the induction of a more plastic neuronal condition/phase, possibly at the expense of the axon growth, (ii) the neuroprotective role exerted through the inhibition of the apoptotic cascade. Increasing the miR-7b-3p levels in case of SCI could reactivate in adult neurons silenced developmental programmes, supporting at the same time the survival of the axotomised neurons.
Collapse
Affiliation(s)
- Matilde Ghibaudi
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
- Polymers and Biomaterials, Italian Institute of Technology, Genova, Italy
| | - Marina Boido
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Elena Signorino
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Gaia Elena Berto
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Soraya Pourshayesteh
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Ferdinando Di Cunto
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alessandro Vercelli
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| |
Collapse
|
28
|
Farkhondeh T, Ashrafizadeh M, Azimi-Nezhad M, Samini F, Aschner M, Samarghandian S. Curcumin Efficacy in a Serum/Glucose Deprivation-Induced Neuronal PC12 Injury Model. Curr Mol Pharmacol 2021; 14:1146-1155. [PMID: 33538682 PMCID: PMC8329120 DOI: 10.2174/1874467214666210203211312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glucose/serum deprivation (GSD), has been used for understanding molecular mechanisms of neuronal damage during ischemia. It has been suggested that curcumin may improve neurodegenerative diseases. AIM In this study, the protective effects of curcumin and its underlying mechanisms were investigated in PC12 cells upon GSD-induced stress. METHODS PC12 cells were cultured in DMEM overnight and then incubated in GSD condition for either 6 or 12h. GSD-treated cells were pretreated with various concentrations of curcumin (10, 20, and 40 μM) for 5h. The cell viability, apoptosis, reactive oxygen species (ROS) level, oxidative stress, expression of apoptosis-related genes, and IL-6 were determined. RESULTS Curcumin increased cell viability and caused an anti-apoptotic effect in PC12 cells exposed for 12h to GSD . Curcumin also increased antioxidant enzyme expression, suppressed lipid peroxidation, and decreased interleukin-6 secretion in PC12 cells subjected to GSD. In addition, pretreatment with curcumin down-regulated pro-apoptotic (Bax), and up-regulated antiapoptotic (Bcl2) mediators. CONCLUSION Curcumin mitigates many of the adverse effects of ischemia, and therefore, should be considered as an adjunct therapy in ischemic patients.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC),
Birjand University of Medical Sciences (BUMS), Birjand. Iran
- Faculty of Pharmacy, Birjand University of Medical
Sciences, Birjand, Iran
- Innovative Medical Research Center, Mashhad Branch, Islamic
Azad University, Mashhad, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla,
34956 Istanbul, Turkey
| | - Mohsen Azimi-Nezhad
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV “Interactions
Gène-Environnement en Physiopathologie CardioVasculaire”,
Université de Lorraine, 54000, Nancy, France
| | - Fariborz Samini
- Department of Neurosurgery, Faculty of Medicine, Mashhad
University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
29
|
Chen X, Deng S, Lei Q, He Q, Ren Y, Zhang Y, Nie J, Lu W. miR-7-5p Affects Brain Edema After Intracerebral Hemorrhage and Its Possible Mechanism. Front Cell Dev Biol 2020; 8:598020. [PMID: 33392188 PMCID: PMC7772315 DOI: 10.3389/fcell.2020.598020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To explore the relationship between miR-7-5p and brain edema after intracerebral hemorrhage and the role of butylphthalide (NBP) in brain edema after intracerebral hemorrhage. Method: Routine blood testing, C-reactive protein results, and computed tomography data were collected 1, 7, and 14 days after intracerebral hemorrhage in six patients. Levels of MMP-9, ZO-1, occludin, IL-6, TNF-α, and miR-7-5p were detected in each patient's serum. Sixty male Sprague-Dawley rats were randomly divided into sham operation, intracerebral hemorrhage, and NBP treatment groups. Dry-wet weight was used to assess brain edema, and Evans blue staining was used to assess the permeability of the blood-brain barrier. Expression levels of IL-6, TNF-α, ZO-1 and occludin, PI3K, AKT, p-AKT, AQP4, and miR-7-5p were analyzed in the rat brains. Result: The blood neutrophil-lymphocyte ratio (NLR) on day 1 was associated with the area of brain edema on day 7. The expression of miR-7-5p decreased after intracerebral hemorrhage, and as a result, the inhibition of the PI3K/AKT pathway was weakened. The decreased inhibition of the PI3K/AKT pathway resulted in an increase in AQP4 expression, which further aggravated brain edema. NBP can upregulate the expression of miR-7-5p, affecting these pathways to reduce brain edema. Conclusion: After intracerebral hemorrhage, miR-7-5p expression in brain tissue is reduced, which may increase the expression of AQP4 by activating the PI3K/AKT pathway. NBP can inhibit this process and reduce brain edema.
Collapse
Affiliation(s)
- Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Nie
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
31
|
Zhou J, Wu N, Lin L. Curcumin Suppresses Apoptosis and Inflammation in Hypoxia/Reperfusion-Exposed Neurons via Wnt Signaling Pathway. Med Sci Monit 2020; 26:e920445. [PMID: 32107363 PMCID: PMC7061587 DOI: 10.12659/msm.920445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury contributes to mortality and morbidity in preterm infants. Curcumin has been shown to exert neuro-protective effects in the central nervous system (CNS). The aim of this study was to investigate the neuro-protective activity of curcumin and the possible underlying molecular mechanisms. MATERIAL AND METHODS A hypoxia/reoxygenation (H/R) protocol was used to simulate I/R injury in vitro. Isolated neonatal neurons were pre-treated with curcumin at serially diluted concentrations and exposed to H/R injury. Cell viability and apoptosis were assessed by MTT and flow cytometry, respectively. Contents of TNFa and IL6 in supernatant of cell culture medium were detected by ELISA. Protein expression, phosphorylation, and nuclear translocation levels were studied by Western blotting. RESULTS H/R reduced cell viability and increased apoptosis of neurons. H/R significantly increased Wnt5a expression, JNK1 phosphorylation, and NF-kappaB nuclear translocation. Moreover, expression levels of cleaved caspase3, TNFalpha, and IL6 were elevated in H/R-exposed neurons. Curcumin pre-treatment significantly increased cell viability and inhibited apoptosis of neurons exposed to H/R, in a concentration-dependent manner. Moreover, curcumin pre-treatment significantly decreased expression levels of Wnt5a, IL6, TNFalpha, and phosphorylation level of JNK1, as well as the nuclear translocation level of NF-kappaB in H/R-exposed neurons, in a concentration-dependent manner. CONCLUSIONS Curcumin exerted neuro-protective effects against H/R-induced neuron apoptosis and inflammation by inhibiting activation of the Wnt/JNK1 signaling pathway.
Collapse
Affiliation(s)
- Jiaxing Zhou
- Newborn Ward and Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital (North Section), Ningbo, Zhejiang, P.R. China
| | - Naisheng Wu
- Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, P.R. China
| | - Liyun Lin
- Newborn Ward and Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital (North Section), Ningbo, Zhejiang, P.R. China
| |
Collapse
|
32
|
Plasma MicroRNA Expression Profiles in Psoriasis. J Immunol Res 2020; 2020:1561278. [PMID: 32411787 PMCID: PMC7201701 DOI: 10.1155/2020/1561278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background Psoriasis is an immune-mediated inflammatory chronic skin disease characterized by chronic inflammation in the dermis, parakeratosis, and excessive epidermal growth. MicroRNAs (miRNAs) are key regulators of immune responses. Although differential expression of miRNAs has been reported in certain inflammatory autoimmune diseases, their role in psoriasis has not been fully illuminated. Our aims were to confirm plasma miRNA expression signatures in psoriasis and to examine their potential influence on psoriasis pathogenesis. Methods A miRNome PCR array was used to analyse the plasma of psoriasis patients and healthy donors. We performed miRNA pathway enrichment and target gene network analyses on psoriasis plasma samples. Results We found several specific plasma miRNA signatures relevant to psoriasis. The miRNAs targeted pathways associated with psoriasis, such as the VEGF, MAPK, and WNT signaling pathways. Network analysis revealed pivotal deregulated plasma miRNAs and their relevant target genes and pathways regulating psoriasis pathogenesis. Conclusions This study analysed the expression of plasma miRNAs and their target pathways, elucidating the pathogenesis of psoriasis; these results may be used to design novel therapeutic strategies and to identify diagnostic biomarkers for psoriasis.
Collapse
|
33
|
Liang D, Jin Y, Lin M, Xia X, Chen X, Huang A. Down-regulation of Xist and Mir-7a-5p improves LPS-induced myocardial injury. Int J Med Sci 2020; 17:2570-2577. [PMID: 33029099 PMCID: PMC7532474 DOI: 10.7150/ijms.45408] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background: X-inactive specific transcript (Xist) is a lncRNA, which plays a significant role in X-chromosome inactivation, regulates cell proliferation in tumor cells, and inhibits apoptosis in acute myocardial infarction. On the other hand, miR-7a-5p is involved in cardiomyocytes injury in myocardial ischemia/reperfusion. However, their roles in LPS-induced damage remain unclear. Objectives: This study aimed at using siRNA transfection and lentivirus infection to regulate the expression of xist and miR-7a-5p, and to evaluate their effects on LPS-induced myocardial damage. Method: Mice cardiomyocytes (MCM) cells were divided into six groups, namely the control group, the LPS group, the LPS + lncRNA- group, the LPS + lncRNA+ group, the LPS + miRNA- group, and the LPS + miRNA+ group. Quantitative real-time PCR (qRT-PCR) was performed to assay for the RNA expressions of xist, miR-7a-5p, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and recombinant mitochondrial transcription factor A (Tfam) in all the groups. The ATP level was determined using the adenosine triphosphate (ATP) assay kit according to the manufacturer's instructions. Flow cytometry was performed to estimate the level of apoptosis and proliferation in cells in each group. Results: The level of xist in the myocardial cells was markedly higher in the LPS group compared with the control group; however, it was reduced in the LPS+ lncRNA- group. There was no significant difference in the expression of xist among the LPS+miRNA-, LPS+miRNA+, and LPS groups. Moreover, the expression of mir-7a-5p was significantly reduced in myocardial cells in the LPS group, and moderately reduced in the LPS+ miRNA- group, but remarkably elevated in the LPS+ miRNA+ group (P<0.05). The expression of mir-7a-5p was comparably similar in the LPS+ lncRNA- group, LPS+ lncRNA+ group, and LPS groups. Further, the levels of PGC-1a, and Tfam were determined. In the LPS group, the expression of PGC-1α was significantly reduced but elevated in the LPS+lncRNA- and LPS+ miRNA- groups (P<0.05). There was no significant difference in the level of PGC-1α among the LPS, LPS+ lncRNA+, and LPS+ miRNA+ groups. The expression of Tfam was markedly reduced in the LPS group (P < 0.05), but elevated after the suppression of xist and mir-7a-5p. The expression of Tfam was not significantly different among the LPS group, LPS+ lncRNA+ and LPS+ miRNA+ groups. Notably, overexpression of mir-7a-5p had a mild effect on the expression of Tfam in the LPS+ miRNA+ group compared with the control group. Besides, ATP expression in the LPS group was markedly reduced, but elevated after the inhibition of xist and mir-7a-5p. Suppressing the expression of xist or mir-7a-5p resulted in reduced cell apoptosis and increased cell proliferation. Conclusions: In this study, we established that down-regulation of xist and mir-7a-5p reduces apoptosis in response to LPS.
Collapse
Affiliation(s)
- Dongshi Liang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yimei Jin
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miaomiao Lin
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojiao Xia
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoli Chen
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Airong Huang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|