1
|
Muhsen M, Alzoubi KH, Khabour OF, Mhaidat N, Rababa'h A, Ali S, Jarab A, Salim S. Pentoxifylline protects memory performance in streptozotocin-induced diabetic rats. Brain Res 2025; 1847:149319. [PMID: 39528094 DOI: 10.1016/j.brainres.2024.149319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Diabetes, characterized by elevated blood glucose levels and associated organ damage, is reportedly correlated with adecline in cognitive functions with a potential involvement of oxidative stress mechanisms. Mitochondria-induced oxidative stress reported to cause hyperglycemia is believed to impair hippocampal neural plasticity, affecting long-term potentiation, and isconsidered crucial for maintaining memory functions. In this study, the neuroprotective effect of Pentoxifylline (PTX) for four weeks, an agent known for antioxidant and anti-inflammatory properties, was examined in an animal model of diabetes. In a streptozotocin (STZ) diabetic model, rats received intraperitoneal PTX (100 mg/kg), and learning and memory functions were tested using the radial arm water maze. STZ-treated diabetic rats exhibited impaired learning and memory functions (short/long-term, P < 0.05), whereas PTX treatment prevented these deficits. PTX treatment normalized diabetes-induced reduction in the protein expression levels of two enzymes of antioxidant defense superoxide dismutase and glutathione peroxidase (P < 0.05) in the hippocampal brain tissues. PTX treatment also mitigated STZ-induced increase in lipid peroxidation (TBARS, P < 0.05). Furthermore, reduced/oxidized glutathione (GSH/GSSG) ratios were enhanced in PTX-treated diabetic rats (P < 0.05), emphasizing the importance of redox balance restoration. However, PTX treatment did not significantly affect theantioxidant defense enzyme catalase activity. In conclusion, STZ-induced diabetes resulted in learning and memory impairment in rats, while PTX treatment prevented these effects, most likely via enhancement of antioxidant defense in the brain. This study highlights PTX's potential neuroprotective benefits, providing translational insights into the issue of diabetes-related cognitive complications.
Collapse
Affiliation(s)
- Maram Muhsen
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Shirin Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Anan Jarab
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates; Department of Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| |
Collapse
|
2
|
Turgutalp B, Kizil C. Multi-target drugs for Alzheimer's disease. Trends Pharmacol Sci 2024; 45:628-638. [PMID: 38853102 DOI: 10.1016/j.tips.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Alzheimer's disease (AD), a leading cause of dementia, increasingly challenges our healthcare systems and society. Traditional therapies aimed at single targets have fallen short owing to the complex, multifactorial nature of AD that necessitates simultaneous targeting of various disease mechanisms for clinical success. Therefore, targeting multiple pathologies at the same time could provide a synergistic therapeutic effect. The identification of new disease targets beyond the classical hallmarks of AD offers a fertile ground for the design of new multi-target drugs (MTDs), and building on existing compounds have the potential to yield in successful disease modifying therapies. This review discusses the evolving landscape of MTDs, focusing on their potential as AD therapeutics. Analysis of past and current trials of compounds with multi-target activity underscores the capacity of MTDs to offer synergistic therapeutic effects, and the flourishing genetic understanding of AD will inform and inspire the development of MTD-based AD therapies.
Collapse
Affiliation(s)
- Bengisu Turgutalp
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY, USA.
| |
Collapse
|
3
|
Jibril TI, Alzoubi KH, Mhaidat NM, Khabour OF, Alqudah MA, Rababa’h AM, Alrabadi N, Al-udatt D. Sildenafil prevents chronic psychosocial stress-induced working memory impairment: Role of brain-derived neurotrophic factor. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100182. [PMID: 38706525 PMCID: PMC11067328 DOI: 10.1016/j.crphar.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Background Psychosocial stress, a common feature in modern societies, impairs cognitive functions. It is suggested that stress hormones and elevated excitatory amino acids during stress are responsible for stress-induced cognitive deficits. Reduced brain-derived neurotrophic factor (BDNF) levels, increased oxidative stress, and alteration of synaptic plasticity biomarkers are also possible contributors to the negative impact of stress on learning and memory. Sildenafil citrate is a selective phosphodiesterase type 5 (PDE5) inhibitor and the first oral therapy for the treatment of erectile dysfunction. It has been shown that sildenafil improves learning and memory and possesses antioxidant properties. We hypothesized that administering sildenafil to stressed rats prevents the cognitive deficit induced by chronic psychosocial stress. Methods Psychosocial stress was generated using the intruder model. Sildenafil 3 mg/kg/day was administered intraperitoneally to animals. Behavioral studies were conducted to test spatial learning and memory using the radial arm water maze. Then, the hippocampal BDNF level and several antioxidant markers were assessed. Results This study revealed that chronic psychosocial stress impaired short-term but not long-term memory. The administration of sildenafil prevented this short-term memory impairment. Chronic psychosocial stress markedly reduced the level of hippocampal BDNF (P˂0.05), and this reduction in BDNF was normalized by sildenafil treatment. In addition, neither chronic psychosocial stress nor sildenafil significantly altered the activity of measured oxidative parameters (P > 0.05). Conclusion Chronic psychosocial stress induces short-term memory impairment. The administration of sildenafil citrate prevented this impairment, possibly by normalizing the level of BDNF.
Collapse
Affiliation(s)
- Tareq I. Jibril
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M. Mhaidat
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A.Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer M. Rababa’h
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Doaa Al-udatt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Sha A, Liu Y, Qiu X, Xiong B. Polysaccharide from Paris polyphylla improves learning and memory ability in D-galactose-induced aging model mice based on antioxidation, p19/p53/p21, and Wnt/β-catenin signaling pathways. Int J Biol Macromol 2023; 251:126311. [PMID: 37579895 DOI: 10.1016/j.ijbiomac.2023.126311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The current study aimed to investigate the effects and mechanisms of Paris polyphylla polysaccharide component 1 (PPPm-1) to improve learning and memory in D-galactose-induced aging model mice. We determined the effects of PPPm-1 on the brain, organ index, and behavior in the aging model mice induced by D-galactose to study learning and memory improvement. UV-Vis spectrophotometry helped determine the PPPm-1 effect on antioxidant parameters associated with learning and memory in the brain and related organs of aging mice. Moreover, in the hippocampi of aging model mice, PPPm-1 effect on the mRNA and protein expressions of p19, p53, p21, P16, Rb, Wnt/1, β-catenin, CyclinD1, TCF-4, and GSK-3β were detected using the quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The results indicated that PPPm-1 could increase the brain and organ indexes, the avoidance latency, the total distance and average speed in the water maze, and the SOD and GSH-PX activities in the brain, liver tissues, and plasma. Moreover, the mRNA and protein expressions of Wnt/1, β-catenin, CyclinD1, and TCF-4 were also elevated in the hippocampi of aging model mice. However, the error times in step-through tests, the MDA content in the brain and liver tissues, the AChE activity in the brain tissue, the protein expressions of P16, Rb in the hippocampi, and the mRNA and protein expressions of p19, p53, p21, and GSK-3β in the hippocampi of aging model mice were significantly decreased. Thus, PPPm-1 significantly enhanced the learning and memory impairment induced by D-galactose in mice. The action mechanisms were associated with anti-oxidative stress, cholinergic nervous system function regulation, LTP enhancement in long-term memory, down-regulated expression of p19/p53/p21 signaling pathway factors, and Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China; School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China.
| | - Yi Liu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Xinyu Qiu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Binbing Xiong
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
5
|
Lim S, Shin S, Sung Y, Lee HE, Kim KH, Song JY, Lee GH, Aziz H, Lukianenko N, Kang DM, Boesen N, Jeong H, Abdildinova A, Lee J, Yu BY, Lim SM, Lee JS, Ryu H, Pae AN, Kim YK. Levosimendan inhibits disulfide tau oligomerization and ameliorates tau pathology in Tau P301L-BiFC mice. Exp Mol Med 2023; 55:612-627. [PMID: 36914856 PMCID: PMC10073126 DOI: 10.1038/s12276-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ha Eun Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ji Yeon Song
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nataliia Lukianenko
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Nicolette Boesen
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hyeanjeong Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Aizhan Abdildinova
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's disease Research Center and VA Boston Health care System, Boston, MA, 02130, USA
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Boston University Alzheimer's disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Fan S, Song R. Beneficial Effects of Tofacitinib in Long-Standing Diabetes-Induced Cognitive Impairment in Rats through BDNF-TNF-α-Nrf2 Signalling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.856.863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Massadeh AM, Alzoubi KH, Milhem AM, Rababa'h AM, Khabour OF. Evaluating the effect of selenium on spatial memory impairment induced by sleep deprivation. Physiol Behav 2022; 244:113669. [PMID: 34871651 DOI: 10.1016/j.physbeh.2021.113669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
Sleep deprivation (SD) impairs memory due to disturbing oxidative stress parameters. Selenium is a main component of several antioxidant enzymes and provides a neuroprotective effect. The present study aimed to investigate the potential neuroprotective effect of chronic selenium administration on cognitive impairments induced by chronic SD. Adult male Wister rats were randomly assigned into five groups (n = 12/group). The SD was induced in rats using modified multiple platform model. Selenium (6 µg/kg of animal's body weight) was administered to rats via oral gavage for 6 weeks. The spatial learning and memory were assessed using the radial arm water maze (RAWM). Moreover, we measured the levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG, catalase, glutathione peroxidase (GPx), superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS) and brain derived neurotrophic factor (BDNF) in the hippocampus. The results indicate that short- and long-term memory were impaired by chronic sleep deprivation (P < 0.05), while selenium administration prevented this effect. Moreover, selenium normalized antioxidants activities which were reduced by SD such as: catalase (P < 0.05), and SOD (P < 0.05), and significantly enhanced the ratio of GSH/GSSG in sleep-deprived rats (P < 0.05), without significant alteration of BDNF (P > 0.05), GSH (P > 0.05), or TBARS levels (P > 0.05). In conclusion, chronic SD induced memory impairment, and chronic treatment with selenium prevented this impairment by normalizing antioxidant enzymes activities in the hippocampus.
Collapse
Affiliation(s)
- Adnan M Massadeh
- Department of Medicinal Chemistry and Pharmacognosy , Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan.
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Amal M Milhem
- Department of Medicinal Chemistry and Pharmacognosy , Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| |
Collapse
|
8
|
Alqudah MA, Al-Nosairy A, Alzoubi KH, Kahbour OF, Alazzam SI. Edaravone prevents memory impairment in diabetic rats: Role of oxidative stress. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
9
|
Alzoubi KH, Khabour OF, Al-Awad RM, Aburashed ZO. Every-other day fasting prevents memory impairment induced by high fat-diet: Role of oxidative stress. Physiol Behav 2021; 229:113263. [PMID: 33246002 DOI: 10.1016/j.physbeh.2020.113263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 01/11/2023]
Abstract
Imbalance of diet consumption results in memory and learning deterioration. High-fat diet (HFD) causes neuronal damage and eventually cognitive impairment, which can be related to increasing oxidative stress in the brain. Using the every other day fasting (EODF) paradigm, as a method of dietary restriction is thought to provide protection of learning and memory in several experimental studies. In the current work, the preventive effect of EODF paradigm on memory impairment-induced by HFD was investigated. Adult male Wistar rats were fed with HFD using the EODF paradigm for six weeks. At the end of these six weeks, and while the previous treatment were continued, rats were examined for learning and memory (both the short-term and the long-term memory) using the radial arm water maze (RAWM). Oxidative stress in the brain, namely in the hippocampus was also assessed. Chronic administration of HFD induced impairment in both, short- and long- term memory that was prevented using EODF paradigm. Furthermore, EODF prevented HFD-induced decrease in the activities of the antioxidant enzymes, SOD and catalase along with reduction of glutathione (GSH) level and the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG ratio). The EODF also inhibited rise in oxidized glutathione (GSSG) and thiobarbituric acid reactive substances (TBARS) seen with HFD. In conclusion, EODF ameliorated oxidative stress and memory impairment induced by chronic HFD. This probably, can be explained by the ability of EODF to normalize mechanisms involved in oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rafat M Al-Awad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Zainah O Aburashed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Thapak P, Bishnoi M, Sharma SS. Pharmacological Inhibition of Transient Receptor Potential Melastatin 2 (TRPM2) Channels Attenuates Diabetes-induced Cognitive Deficits in Rats: A Mechanistic Study. Curr Neurovasc Res 2020; 17:249-258. [DOI: 10.2174/1567202617666200415142211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Background:
Diabetes is a chronic metabolic disorder affecting the central nervous system.
A growing body of evidence has depicted that high glucose level leads to the activation of the
transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting
TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach.
Objective:
The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate
(2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment.
Methods:
Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were
randomly divided into the treatment group, model group and age-matched control and pre se
group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural
treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction
and the hippocampus and cortex were isolated. After that, protein and mRNA expression study
was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex.
Results: :
Our study showed the 10th week diabetic animals developed cognitive impairment, which
was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2
mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex.
However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent
protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP
response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95).
Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF)
were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit
alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment
with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic
rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the
hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic
animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9),
CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and
BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic
animals.
Conclusion: :
This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes-
induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated
downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced
cognitive impairment.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| |
Collapse
|
11
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LM, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RH, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use. Card Fail Rev 2020; 6:e19. [PMID: 32714567 PMCID: PMC7374352 DOI: 10.15420/cfr.2020.03] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Levosimendan was first approved for clinic use in 2000, when authorisation was granted by Swedish regulatory authorities for the haemodynamic stabilisation of patients with acutely decompensated chronic heart failure. In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitisation and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced heart failure, right ventricular failure and pulmonary hypertension, cardiac surgery, critical care and emergency medicine. Levosimendan is currently in active clinical evaluation in the US. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and non-cardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, UK and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute heart failure arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge Barcelona, Spain
| | - Marisa G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC) La Coruña, Spain
| | - Juan F Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre Madrid, Spain
| | - Istvan Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alexander A Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme Brussels, Belgium
| | - Leo Ma Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service Leeds, UK
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital Milan, Italy
| | - Julius-Gyula Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Hynek Riha
- Cardiothoracic Anaesthesiology and Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Institute for Clinical and Experimental Medicine Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal Schlieren, Switzerland
| | | | - Robert Hg Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité - University Medicine Berlin Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz Graz, Austria
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Centre, Department of Cardiology, University Clinical Centre Ljubljana, Slovenia
| | | |
Collapse
|
12
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LMA, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RHG, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J Cardiovasc Pharmacol 2020; 76:4-22. [PMID: 32639325 PMCID: PMC7340234 DOI: 10.1097/fjc.0000000000000859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital, Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Marisa G. Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC), La Coruña, Spain
| | - Juan F. Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre, Madrid, Spain
| | - István Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexander A. Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University, Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO, Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena, Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki, Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme, Brussels, Belgium
| | - Leo M. A. Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre, Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service, Leeds, United Kingdom
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma, Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital, Milan, Italy
| | - Julius G. Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology, Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hynek Riha
- Department of Anaesthesiology and Intensive Care Medicine, Cardiothoracic Anaesthesiology and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal, Schlieren, Switzerland
| | | | - Robert H. G. Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg, Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité—University Medicine Berlin, Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz, Graz, Austria
| | - Bojan Vrtovec
- Department of Cardiology, Advanced Heart Failure and Transplantation Centre, University Clinical Centre, Ljubljana, Slovenia
| | - Piero Pollesello
- Critical Care Proprietary Products, Orion Pharma, Espoo, Finland.
| |
Collapse
|