1
|
Zhou M, Tang AS, Zhang H, Xu Z, Ke AMC, Su C, Huang Y, Mantyh WG, Jaffee MS, Rankin KP, DeKosky ST, Zhou J, Guo Y, Bian J, Sirota M, Wang F. Identifying progression subphenotypes of Alzheimer's disease from large-scale electronic health records with machine learning. J Biomed Inform 2025; 165:104820. [PMID: 40180206 DOI: 10.1016/j.jbi.2025.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVE Identification of clinically meaningful subphenotypes of disease progression can enhance the understanding of disease heterogeneity and underlying pathophysiology. In this study, we propose a machine learning framework to identify subphenotypes of Alzheimer's disease progression based on longitudinal real-world patient records. METHODS The framework, dynaPhenoM, extracts coherent clinical topics across patient visits and employs a time-aware latent class analysis to characterize subphenotypes. We validated dynaPhenoM using three patient databases with a total of 3952 AD patients across the United States, demonstrating its effectiveness in revealing mild cognitive impairment (MCI) progression to AD. RESULTS Our study identified five subphenotypes associated with distinct organ systems for disease progression from MCI to AD, including common subtypes across cohorts-respiratory, musculoskeletal, cardiovascular, and endocrine/metabolic-as well as a cohort-specific digestive subtype. CONCLUSION Our study unravels the complexity and heterogeneity of the progression from MCI to AD. These findings highlight disease progression heterogeneity and can inform both diagnostic and therapeutic strategies, thereby advancing precision medicine for Alzheimer's disease.
Collapse
Affiliation(s)
- Manqi Zhou
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alice S Tang
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco and Berkeley, CA 94143, USA
| | - Hao Zhang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Alison M C Ke
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yu Huang
- Biostatistics and Health Data Science, School of Medicine, Indiana Univeristy, Indianapolis, IN 47374, USA
| | - William G Mantyh
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael S Jaffee
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Katherine P Rankin
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steven T DeKosky
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jiayu Zhou
- School of Information, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, GL 32610, USA
| | - Jiang Bian
- Biostatistics and Health Data Science, School of Medicine, Indiana Univeristy, Indianapolis, IN 47374, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
2
|
Pérez-González AP, de Anda-Jáuregui G, Hernández-Lemus E. Differential Transcriptional Programs Reveal Modular Network Rearrangements Associated with Late-Onset Alzheimer's Disease. Int J Mol Sci 2025; 26:2361. [PMID: 40076979 PMCID: PMC11900169 DOI: 10.3390/ijms26052361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a complex, genetically heterogeneous disorder. The diverse phenotypes associated with AD result from interactions between genetic and environmental factors, influencing multiple biological pathways throughout disease progression. Network-based approaches offer a way to assess phenotype-specific states. In this study, we calculated key network metrics to characterize the network transcriptional structure and organization in LOAD, focusing on genes and pathways implicated in AD pathology within the dorsolateral prefrontal cortex (DLPFC). Our findings revealed disease-specific coexpression markers associated with diverse metabolic functions. Additionally, significant differences were observed at both the mesoscopic and local levels between AD and control networks, along with a restructuring of gene coexpression and biological functions into distinct transcriptional modules. These results show the molecular reorganization of the transcriptional program occurring in LOAD, highlighting specific adaptations that may contribute to or result from cellular responses to pathological stressors. Our findings may support the development of a unified model for the causal mechanisms of AD, suggesting that its diverse manifestations arise from multiple pathways working together to produce the disease's complex clinical patho-phenotype.
Collapse
Affiliation(s)
- Alejandra Paulina Pérez-González
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City 04510, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Guillermo de Anda-Jáuregui
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores por M’exico, Conahcyt, Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Lv D, Lin X, Zhang X, Shen Q. Impact of 16S rRNA on Intestinal Flora Alterations and Early Diagnosis in Early Alzheimer's Disease Patients. ACTAS ESPANOLAS DE PSIQUIATRIA 2025; 53:208-221. [PMID: 40071377 PMCID: PMC11898251 DOI: 10.62641/aep.v53i2.1682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Alzheimer's Disease (AD), a complex clinical condition, relies on neuropsychological assessments for early diagnosis. Recently, the gut-brain axis has been recognized as crucial in AD development, with dysbiosis in gut microbiota implicated in disease progression. Utilizing 16S rRNA analysis provides comprehensive monitoring of gut microbiota, potentially revealing biological markers for Early Alzheimer's Disease (EAD). Therefore, this study aimed to investigate the diagnostic impact of 16S ribosomal RNA (rRNA) on changes in intestinal flora among EAD patients. METHODS This study analyzed stool samples from 50 AD patients and 50 healthy controls between June 2022 and June 2023. Based on the disease stage, patients were categorized into EAD (n = 14) and Late Alzheimer's Disease (LAD) groups (n = 36). The V3-V4 region was sequenced using 16S rRNA quantitative Polymerase Chain Reaction (qPCR) to compare the composition of gut microbiota and differences in abundance among the three experimental groups. RESULTS The abundance and diversity of gut microbiota significantly increased in EAD patients compared to the healthy control group. Furthermore, 39 genera showed considerable variations between EAD and LAD patients and healthy controls, with notable increases in the abundance of Bryantella, Gemmiger, Desulfovibrio, Collinsella, and Odoribacter among EAD patients. Additionally, significant differences were observed across the Desulfovibrioales and Verrucomicrobiales, which could help distinguish EAD patients (Area Under the Curve (AUC) range 0.854, 0.966, p < 0.05). CONCLUSION 16S rRNA technology can be used to identify EAD patients, with the Desulfovibrioales and Verrucomicrobiales indicators serving as potential biological markers.
Collapse
Affiliation(s)
- Danping Lv
- Department of Laboratory, Shaoxing Seventh People’s Hospital, 312000 Shaoxing, Zhejiang, China
| | - Xiuqin Lin
- Department of Laboratory, Shaoxing Seventh People’s Hospital, 312000 Shaoxing, Zhejiang, China
| | - Xinyuan Zhang
- Department of Laboratory, Shaoxing Seventh People’s Hospital, 312000 Shaoxing, Zhejiang, China
| | - Qundi Shen
- Department of Laboratory, Shaoxing Seventh People’s Hospital, 312000 Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Kuźniar J, Kozubek P, Czaja M, Leszek J. Correlation between Alzheimer's Disease and Gastrointestinal Tract Disorders. Nutrients 2024; 16:2366. [PMID: 39064809 PMCID: PMC11279885 DOI: 10.3390/nu16142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally. The pathogenesis is multifactorial and includes deposition of amyloid-β in the central nervous system, presence of intraneuronal neurofibrillary tangles and a decreased amount of synapses. It remains uncertain what causes the progression of the disease. Nowadays, it is suggested that the brain is connected to the gastrointestinal tract, especially the enteric nervous system and gut microbiome. Studies have found a positive association between AD and gastrointestinal diseases such as periodontitis, Helicobacter pylori infection, inflammatory bowel disease and microbiome disorders. H. pylori and its metabolites can enter the CNS via the oropharyngeal olfactory pathway and may predispose to the onset and progression of AD. Periodontitis may cause systemic inflammation of low severity with high levels of pro-inflammatory cytokines and neutrophils. Moreover, lipopolysaccharide from oral bacteria accompanies beta-amyloid in plaques that form in the brain. Increased intestinal permeability in IBS leads to neuronal inflammation from transference. Chronic inflammation may lead to beta-amyloid plaque formation in the intestinal tract that spreads to the brain via the vagus nerve. The microbiome plays an important role in many bodily functions, such as nutrient absorption and vitamin production, but it is also an important factor in the development of many diseases, including Alzheimer's disease. Both the quantity and diversity of the microbiome change significantly in patients with AD and even in people in the preclinical stage of the disease, when symptoms are not yet present. The microbiome influences the functioning of the central nervous system through, among other things, the microbiota-gut-brain axis. Given the involvement of the microbiome in the pathogenesis of AD, antibiotic therapy, probiotics and prebiotics, and faecal transplantation are being considered as possible therapeutic options.
Collapse
Affiliation(s)
- Julia Kuźniar
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Patrycja Kozubek
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Magdalena Czaja
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Jerzy Leszek
- Department of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| |
Collapse
|
6
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
8
|
Ganeshpurkar A, Ganeshpurkar A, Khangar PK, Akotkar L, Jain S, Prajapati H, Dubey N. In Silico Investigation of Suillin Derived from Suillus luteus Mushroom (Agaricomycetes) Targeting Acetylcholinesterase: Docking and Virtual Screening Study. Int J Med Mushrooms 2024; 26:75-80. [PMID: 39241165 DOI: 10.1615/intjmedmushrooms.2024055215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
This study integrates bioinformatics and computer-aided drug discovery to assess suillin's therapeutic potential, particularly its interaction with acetylcholinesterase (AChE). Alzheimer's disease presents profound challenges, necessitating effective treatments to mitigate cognitive decline and improve patients' quality of life. Although current medications offer symptomatic relief, they often entail adverse effects and do not address the underlying disease progression. Natural sources, such as macrofungi mushrooms, hold promise for novel drug discovery due to their bioactive compounds' diverse therapeutic properties. Suillin, derived from Suillus luteus mushrooms, shows promise as a mixed-type AChE inhibitor, crucial for maintaining acetylcholine levels in neurodegenerative disorders like Alzheimer's disease. Computational docking studies reveal suillin's distinctive interactions with AChE, suggesting potential modulation of enzyme function through various bonding mechanisms. The Molinspiration drug-likeness score further supports suillin's efficacy, indicating its suitability for enzyme inhibition. By combining computational and bioinformatics approaches, this study elucidates suillin's molecular interactions and underscores its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Aditya Ganeshpurkar
- Drug Discovery Laboratory, Shri Ram Institute of Technology-Pharmacy, Jabalpur, M.P., India
| | - Ankit Ganeshpurkar
- Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| | | | - Likhit Akotkar
- Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| | - Swati Jain
- Shri Ram Institute of Technology-Pharmacy, Jabalpur, India
| | | | - Nazneen Dubey
- Shri Ram Institute of Technology-Pharmacy, Jabalpur, M.P., India
| |
Collapse
|
9
|
Acar M, Seker B, Ugur S. Radio-Anatomical Assessment of Cerebellum Volume in Individuals with Alzheimer's Disease. Curr Alzheimer Res 2024; 21:599-606. [PMID: 39757624 DOI: 10.2174/0115672050365323241217175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Alzheimer's disease is a chronic brain disease that includes memory and language disorders. This disease, which is considered the most common cause of dementia worldwide, accounts for 60-80% of all dementia cases. Recent studies suggest that the cerebellum may play a role in cognitive functions as well as motor functions. MATERIALS AND METHODS The study was conducted on 40 Alzheimer's patients and 40 healthy individuals. In our study, volumetric evaluation of the cerebellum was performed. RESULTS As expected, significant differences were found in cerebellar volume reduction in AD patients compared to healthy controls. Significant volume increase was observed in some regions of the cerebellum in Alzheimer's patients compared to healthy individuals. CONCLUSION The findings supported the role of the cerebellum in cognitive functions. Volume reductions may assist clinicians in making an early diagnosis of AD.
Collapse
Affiliation(s)
- Musa Acar
- Department of Physiotherapy and Rehabilitation, Faculty of Nezahat Keleşoğlu Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Busra Seker
- Department of Anatomy, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sultan Ugur
- Department of Radiology, Pursaklar Public Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Liu G, Yu Q, Zhu H, Tan B, Yu H, Li X, Lu Y, Li H. Amyloid-β mediates intestinal dysfunction and enteric neurons loss in Alzheimer's disease transgenic mouse. Cell Mol Life Sci 2023; 80:351. [PMID: 37930455 PMCID: PMC11072809 DOI: 10.1007/s00018-023-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is traditionally considered as a brain disorder featured by amyloid-β (Aβ) deposition. The current study on whether pathological changes of AD extend to the enteric nervous system (ENS) is still in its infancy. In this study, we found enteric Aβ deposition, intestinal dysfunction, and colonic inflammation in the young APP/PS1 mice. Moreover, these mice exhibited cholinergic and nitrergic signaling pathways damages and enteric neuronal loss. Our data show that Aβ42 treatment remarkably affected the gene expression of cultured myenteric neurons and the spontaneous contraction of intestinal smooth muscles. The intra-colon administration of Aβ42 induced ENS dysfunction, brain gliosis, and β-amyloidosis-like changes in the wild-type mice. Our results suggest that ENS mirrors the neuropathology observed in AD brains, and intestinal pathological changes may represent the prodromal events, which contribute to brain pathology in AD. In summary, our findings provide new opportunities for AD early diagnosis and prevention.
Collapse
Affiliation(s)
- Guoqiang Liu
- Medical College, Hubei University for Nationalities, Enshi, 445000, Hubei, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Houze Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Li
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|